聚四氟乙烯中空纤维复合膜及其制备方法

    公开(公告)号:CN111330453B

    公开(公告)日:2022-04-19

    申请号:CN202010149389.1

    申请日:2020-03-06

    Abstract: 本发明属于分离膜技术领域,尤其涉及一种聚四氟乙烯中空纤维复合膜及其制备方法,该复合膜为双层结构,所述复合膜包括外侧的亲水超滤表皮层和内侧的疏水PTFE支撑层,所述亲水超滤表皮层初始接触角为20°‑85°,所述亲水超滤表皮层的厚度为2μm‑50μm,表面的微孔结构呈圆形且均匀分布,微孔的平均孔径为5nm‑100nm,所述亲水超滤表皮层的断面为海绵状孔,所述疏水PTFE支撑层初始接触角为108°‑158°,其微孔结构为由微细纤维间缝隙形成的点线状分离孔,分离孔的平均孔径为750nm‑4000nm,孔隙率为65%‑85%。本发明的有益效果是:该复合结构聚四氟乙烯中空纤维膜具备持久疏水性和高效分离性能。同时,本发明制备方法简便、高效、经济、环保,制得的复合膜稳定性好。

    一种膜组件湿态存储处理方法及处理装置

    公开(公告)号:CN111111453A

    公开(公告)日:2020-05-08

    申请号:CN201911314225.3

    申请日:2019-12-19

    Abstract: 本发明属于过滤膜组件生产技术领域,尤其涉及一种膜组件湿态存储处理方法,将臭氧水在一定的进水压力和进水流量下通过待处理膜组件,对待处理膜组件进行杀菌处理;然后将臭氧水处理完成后的膜组件进行塑封保存。同时提供了一种用于实现本方法的膜组件湿态存储处理装置。本发明的有益效果是:确保膜组件存储过程中不滋生细菌,保证性能的稳定,且膜组件在使用前不需要用纯水冲洗,可直接使用,整个过程亦不会产生二次污染,为一种绿色环保的方法。

    一种聚四氟乙烯微孔膜及其制备方法

    公开(公告)号:CN111408284B

    公开(公告)日:2022-03-29

    申请号:CN202010291100.X

    申请日:2020-04-14

    Abstract: 本发明属于分离膜技术领域,尤其涉及一种聚四氟乙烯微孔膜。聚四氟乙烯微孔膜表面微孔由粗壮的微原纤维构成,呈现出裂隙或针刺状孔结构,常规节点‑微细纤维状微孔结构消失。该微孔膜的微孔孔径分布均匀、平均孔径20nm‑600nm,机械强度提高、拉伸断裂应力40MPa‑100MPa。进一步,本发明还公开了此微孔结构PTFE微孔膜的制备方法,在PTFE分散树脂中添加0.3wt%‑30wt%热塑性全氟聚合物粉末;对PTFE型坯进行两次烧结处理,第一次烧结处理实现型体中PTFE分散树脂熔融比例0.5wt%‑55wt%,第二次烧结处理实现对拉伸成孔后型体微孔结构的定型固化。本发明有效提高了PTFE微孔膜手感硬度即机械强度,微孔结构更加均匀、机械稳定性更强,孔径大小易于调节,产品性能和制备工艺的稳定性均有所提高。

    一种超疏水聚丙烯微孔膜及其制备方法

    公开(公告)号:CN113713632A

    公开(公告)日:2021-11-30

    申请号:CN202110865258.8

    申请日:2021-07-29

    Abstract: 本发明公开了一种超疏水聚丙烯微孔膜,包括聚丙烯微孔基膜和构筑于其表面的超疏水层;所述超疏水层由疏水纳米粒子掺混聚合物制备而得;利用疏水纳米材料与高分子长链间交缠作用,在聚丙烯微孔膜表面构筑一层既均匀又稳固,既微观形貌粗糙,又表面能低的超疏水层,得到超疏水聚丙烯微孔膜。首先,将疏水纳米粒子与溶剂混合,在强烈搅拌和超声共同作用下,逐渐加入聚合物使之溶解,得到均相混合液;然后,将聚丙烯微孔基膜浸泡于上述混合液中反应,随后取出晾干、烘干后所得即为超疏水聚丙烯微孔膜。本发明所用原料来源广泛,价格低廉,制备过程简单可控,膜表面疏水性能大大提高,接触角甚至可达到160°以上,可满足多种疏水微孔膜的使用要求。

    一种聚四氟乙烯微孔膜及其制备方法

    公开(公告)号:CN111408284A

    公开(公告)日:2020-07-14

    申请号:CN202010291100.X

    申请日:2020-04-14

    Abstract: 本发明属于分离膜技术领域,尤其涉及一种聚四氟乙烯微孔膜。聚四氟乙烯微孔膜表面微孔由粗壮的微原纤维构成,呈现出裂隙或针刺状孔结构,常规节点-微细纤维状微孔结构消失。该微孔膜的微孔孔径分布均匀、平均孔径20nm-600nm,机械强度提高、拉伸断裂应力40MPa-100MPa。进一步,本发明还公开了此微孔结构PTFE微孔膜的制备方法,在PTFE分散树脂中添加0.3wt%-30wt%热塑性全氟聚合物粉末;对PTFE型坯进行两次烧结处理,第一次烧结处理实现型体中PTFE分散树脂熔融比例0.5wt%-55wt%,第二次烧结处理实现对拉伸成孔后型体微孔结构的定型固化。本发明有效提高了PTFE微孔膜手感硬度即机械强度,微孔结构更加均匀、机械稳定性更强,孔径大小易于调节,产品性能和制备工艺的稳定性均有所提高。

    一种亲水性PTFE中空纤维膜及其制备方法

    公开(公告)号:CN111111470A

    公开(公告)日:2020-05-08

    申请号:CN201911289960.3

    申请日:2019-12-16

    Abstract: 本发明属于PTFE水处理膜技术领域,尤其涉及一种亲水性PTFE中空纤维膜及其制备方法,包括PTFE中空纤维膜、覆盖在PTFE中空纤维膜表面的聚多巴胺层,其特征在于:在聚多巴胺层表面构造改性亲水功能层,改性亲水功能层是CaCl2和Na2CO3两种无机盐溶液在膜表面原位生成CaCO3形成的功能层;聚多巴胺层覆盖在PTFE中空纤维膜的内表面和/或外表面。本发明通过将聚多巴胺层覆盖修饰的PTFE中空纤维膜依次经CaCl2溶液和Na2CO3溶液处理,重复操作此步骤,清洗干燥后,得到CaCO3亲水改性的PTFE中空纤维膜。本发明的有益效果是:工艺简单,未大量使用有机溶剂,提高了环境友好性;可以通过PTFE中空纤维膜内表面的亲水改性,实现对膜内部本体结构的改性。

    一种高通量高强度聚乳酸分离膜的制备方法及其应用

    公开(公告)号:CN119524639B

    公开(公告)日:2025-04-22

    申请号:CN202510099853.3

    申请日:2025-01-22

    Abstract: 本发明属于聚乳酸分离膜技术领域,具体涉及一种高通量高强度聚乳酸分离膜的制备方法及其应用。所述方法包括:步骤1,制备含有聚乳酸、稀释剂、成孔剂和有机溶剂的铸膜液;步骤2,在水平基底上制备连续液膜,并对其进行恒温恒湿处理;步骤3,将液膜连同基底一同浸没至纯水凝固浴中使薄膜固化,得到所述高通量高强度聚乳酸分离膜。本发明在铸膜液中引入沸点和粘度均高于有机溶剂的液体作为稀释剂,并对液膜进行恒温恒湿处理,使液膜表面聚乳酸的浓度处于适宜范围的同时诱导液膜发生全基体凝胶化,从而保证了聚乳酸分离膜的高通量和高强度,能够制备得到具有近似对称结构的高性能聚乳酸分离膜。上述技术方案操作简便且成本较低,易于工业化放大。

    一种高通量高强度聚乳酸分离膜的制备方法及其应用

    公开(公告)号:CN119524639A

    公开(公告)日:2025-02-28

    申请号:CN202510099853.3

    申请日:2025-01-22

    Abstract: 本发明属于聚乳酸分离膜技术领域,具体涉及一种高通量高强度聚乳酸分离膜的制备方法及其应用。所述方法包括:步骤1,制备含有聚乳酸、稀释剂、成孔剂和有机溶剂的铸膜液;步骤2,在水平基底上制备连续液膜,并对其进行恒温恒湿处理;步骤3,将液膜连同基底一同浸没至纯水凝固浴中使薄膜固化,得到所述高通量高强度聚乳酸分离膜。本发明在铸膜液中引入沸点和粘度均高于有机溶剂的液体作为稀释剂,并对液膜进行恒温恒湿处理,使液膜表面聚乳酸的浓度处于适宜范围的同时诱导液膜发生全基体凝胶化,从而保证了聚乳酸分离膜的高通量和高强度,能够制备得到具有近似对称结构的高性能聚乳酸分离膜。上述技术方案操作简便且成本较低,易于工业化放大。

Patent Agency Ranking