-
公开(公告)号:CN119706831A
公开(公告)日:2025-03-28
申请号:CN202411668103.5
申请日:2024-11-21
Applicant: 哈尔滨电气科学技术有限公司 , 哈尔滨工业大学
IPC: C01B32/318 , C01B32/336 , C01B32/348 , H01M4/587 , H01M10/054
Abstract: 一种基于配煤工艺的同质异构碳负极材料的构筑方法,属于电化学储能材料技术领域。方法如下:煤种的选择与预处理;煤种配比;煤种混合与预热解;混合煤样高温炭化;后处理与成型。本发明通过科学配比无烟煤与褐煤,结合预处理、混合预热解、高温炭化及后处理工艺,实现了硬碳材料微观结构的优化,实现储钠性能的提升。不仅工艺简单、成本低廉,适合大规模工业化生产,而且所制备的硬碳负极材料展现出卓越的循环稳定性和较高的比容量,有效提升了钠离子电池的性能。本发明充分利用了无烟煤与褐煤的各自优势,为钠离子电池负极材料的研发开辟了新路径,具有显著的技术创新性和应用价值。
-
公开(公告)号:CN117756113A
公开(公告)日:2024-03-26
申请号:CN202311698002.8
申请日:2023-12-11
Applicant: 哈尔滨工业大学 , 哈尔滨电气科学技术有限公司
Abstract: 本发明涉及能量存储技术领域,并提供了一种耦合外热源的吸附塔与压缩机协同运行系统及方法,包括CO2吸附模块、CO2压缩模块以及CO2换热模块,CO2换热模块用于与外界高温热源连接,CO2压缩模块包括压缩部分和中冷部分,CO2吸附模块经压缩部分与中冷部分的输出流向形成CO2的第一流通路径;CO2吸附模块经中冷部分后回流至CO2吸附模块的输出流向形成CO2的第二流通路径。通过输入第一换热介质与中质换热,吸收系统内高温气体余热同时实现中冷作用,提升吸附式压缩CO2储能系统效率;同时利用低温CO2作为第二换热介质进入CO2换热模块与外界高温热源换热,充分利用烟气余热,实现系统与外界余热消纳。
-
公开(公告)号:CN119565316A
公开(公告)日:2025-03-07
申请号:CN202411668096.9
申请日:2024-11-21
Applicant: 哈尔滨电气科学技术有限公司 , 哈尔滨工业大学
IPC: B01D53/04
Abstract: 基于碳材料极性官能团与电场耦合的CO2吸附捕集方法,属于CO2吸附捕集技术领域。方法如下:对碳基吸附剂进行极性官能团定向嫁接后与石英砂混合均匀而后放于固定床反应器内并调控床层温压至所需;将含10~20vol%浓度的CO2的工业烟气通入固定床反应器内;碳基吸附剂对CO2进行吸附捕集饱和后对碳基吸附剂施加外加电场;碳基吸附剂进行热再生。本发明通过嫁接极性官能团至碳基吸附剂,结合外加电场实现了CO2的高效吸附与低能耗再生,提升了吸附剂对CO2的选择性和吸附容量,还通过引导能量定向聚焦于CO2富集区域,降低了无效能量消耗。
-
公开(公告)号:CN117288014A
公开(公告)日:2023-12-26
申请号:CN202311199025.4
申请日:2023-09-18
Applicant: 哈尔滨工业大学 , 哈尔滨电气科学技术有限公司
Abstract: 一种吸附压缩二氧化碳储能系统及其启动调试方法,涉及一种气体储能系统。CO2吸附剂低压储罐、第一过滤器、低压进气阀、低压调节阀、第一级压缩机、第一级间冷却器、第二级压缩机、第二级间冷却器、第三级压缩机、第三级间冷却器、第一截止阀、第二过滤器、超临界CO2高压储罐、第三过滤器、高压进气阀、第二截止阀、第一再热器、第一级膨胀机、第二再热器、第二级膨胀机、第三再热器及第三级膨胀机、第四过滤器和第三截止阀依次串联形成闭式循环,冷罐泵送冷水换热后流入热罐,热罐泵送热水换热后流入冷罐。使系统快速达到正常运行状态,提高启动效率,减少能耗,有效避免过载和故障,减少系统的波动和不稳定性,确保系统正常启动。
-
公开(公告)号:CN118925438A
公开(公告)日:2024-11-12
申请号:CN202411237677.7
申请日:2024-09-05
Applicant: 哈尔滨工业大学 , 哈尔滨电气科学技术有限公司
IPC: B01D53/04
Abstract: 本发明提供了一种吸附塔,涉及化工设备技术领域,吸附塔包括内部中空的塔体和多个吸附层;多个吸附层沿塔体的长度方向间隔设置在塔体内,塔体的侧壁上开设有入口和出口,入口和出口之间间隔预设数量的吸附层,入口用于注入目标气体,目标气体用于经过预设数量的吸附层进行吸附或脱附,并通过出口排出吸附或脱附完成的目标气体。如此,由入口注入的目标气体始终经过预设数量(例如两个)的吸附层后由对应的出口排出,其吸附或脱附始终保持较高的效率和稳定的状态,且有效降低了运行过程中的损耗,有助于后续设备的稳定运行。
-
公开(公告)号:CN117490462A
公开(公告)日:2024-02-02
申请号:CN202311651632.X
申请日:2023-12-04
Applicant: 哈尔滨工业大学 , 哈尔滨电气科学技术有限公司
Abstract: 本发明提供了一种热电比可调的气热共储系统及运行方法,涉及储能技术领域。所述系统包括:气热共储吸附塔、低压柔性气囊、第一管道和第二管道,气热共储吸附塔用于吸附或脱附气体并作为蓄热塔存储热量或作为供热塔释放热量,低压柔性气囊用于存储或释放气体,气热共储吸附塔的入口和低压柔性气囊的入口均与第一管道连接,第一管道用于与膨胀机出口连接,气热共储吸附塔的出口和低压柔性气囊的出口均与第二管道连接,第二管道用于与压缩机的入口连接。本发明通过低压柔性气囊和气热共储吸附塔结合的方式进行常压气体的存储,更经济、安全,且可以实现系统对输入侧不同热电比能量的适应性消纳,适应不同热电比能量输入的情况,应用范围更广。
-
公开(公告)号:CN116966872A
公开(公告)日:2023-10-31
申请号:CN202310794691.6
申请日:2023-06-30
Applicant: 哈尔滨工业大学 , 哈尔滨电气科学技术有限公司
Abstract: 本发明公开了一种稻壳基生物炭的制备方法与应用,所述方法通过深挖功能炭多尺度基元序筑策略及其常压高容量吸/脱附CO2机理,合理调控纳孔分级孔道与表面官能化基团限域配伍特性,构建了孔道‑基团协同吸附CO2体系,以实现常温常压CO2“高容量吸附‑灵活脱附”耦合“低再生能耗”目标,从根本上解决了新型吸附压缩二氧化碳超/跨临界储能系统中的核心—常压CO2高容量存储问题。本发明开发出高吸附容量、高吸附速率以及高循环效率吸附CO2的稻壳基生物炭,生物炭孔道内部碳基质壁面含有丰富的有利于CO2分子物理吸附与输运牵引的吡啶/吡啶酮N,以及更利于CO2分子输运吸附的孔径分布情况。
-
公开(公告)号:CN117433341A
公开(公告)日:2024-01-23
申请号:CN202311651426.9
申请日:2023-12-04
Applicant: 哈尔滨工业大学 , 哈尔滨电气科学技术有限公司
Abstract: 本发明提供了一种应用于压缩二氧化碳储能系统的三流体板式换热器,涉及换热器技术领域。应用于压缩二氧化碳储能系统的三流体板式换热器包括沿板片厚度方向依次排列的第一板片、第二板片和第三板片,第一板片、第二板片和第三板片上的相同位置处均开设有流体流通孔,流体流通孔在任一板片上均设置有四个,第一板片、第二板片和第三板片上的位置对应的流体流通孔依次连通,以用于高温流体流通;第二板片上的流体流通孔朝向第三板片上的流体流通孔的一端设置有环形凸起,环形凸起连通第二板片和第三板片上的流体流通孔,且使第二板片与第三板片间隔,以在第二板片与第三板片的板间形成用于低温流体流动的流道。解决换热器换热不均匀的问题。
-
公开(公告)号:CN117365702A
公开(公告)日:2024-01-09
申请号:CN202311530039.X
申请日:2023-11-16
Applicant: 哈尔滨工业大学 , 哈尔滨电气科学技术有限公司
Abstract: 一种耦合吸附压缩超临界CO2储能的动力循环发电系统,包括超临界CO2动力循环发电部分和吸附压缩超临界CO2储能部分,超临界CO2动力循环发电部分包括煤气化单元、燃烧室、膨胀单元Ⅰ、高温回热器、低温回热器、冷却及水分离单元、换热器Ⅰ和压缩单元Ⅰ;吸附压缩超临界CO2储能部分包括低压CO2吸附储罐、压缩单元Ⅱ、换热器II、超临界CO2储罐、换热器Ⅲ和膨胀单元Ⅱ。本发明发电系统采用超临界CO2循环高效发电,并与吸附压缩超临界CO2储能耦合。提升循环效率的同时满足电网基本需求,消纳不稳定的可再生能源,减少能源浪费,并将多余的超临界CO2进行封存或油田驱油等形式利用,实现发电零碳排放。
-
公开(公告)号:CN119926111A
公开(公告)日:2025-05-06
申请号:CN202510283269.3
申请日:2025-03-11
Applicant: 哈尔滨电气科学技术有限公司
Abstract: 一种预热处理二氧化碳吸附系统及其运行方法,属于储能及化工过程设备技术领域。解决了现有技术中吸附剂用热量大、热导率低、加热迟缓的问题。技术要点:加热初期系统升温缓慢,二氧化碳部分解吸,经高温换热设备加热后回流至吸附塔塔体,由于压缩气体储能系统实行非连续储能‑释能,该加热过程可于储能‑释能外的空闲时间完成。本发明可以在相对较低的温度范围内实现较好的吸附和解吸效果,从而降低加热和冷却过程中的能量需求,降低系统的整体能耗,缓解加热系统的换热压力,缓解对加热设备换热功率的需求;吸附塔塔体内气体压力小幅升高,保障了吸附系统的二氧化碳连续、平稳释放供给,具有良好的工业化应用前景。
-
-
-
-
-
-
-
-
-