一种稻壳基生物炭的制备方法与应用

    公开(公告)号:CN116966872A

    公开(公告)日:2023-10-31

    申请号:CN202310794691.6

    申请日:2023-06-30

    Abstract: 本发明公开了一种稻壳基生物炭的制备方法与应用,所述方法通过深挖功能炭多尺度基元序筑策略及其常压高容量吸/脱附CO2机理,合理调控纳孔分级孔道与表面官能化基团限域配伍特性,构建了孔道‑基团协同吸附CO2体系,以实现常温常压CO2“高容量吸附‑灵活脱附”耦合“低再生能耗”目标,从根本上解决了新型吸附压缩二氧化碳超/跨临界储能系统中的核心—常压CO2高容量存储问题。本发明开发出高吸附容量、高吸附速率以及高循环效率吸附CO2的稻壳基生物炭,生物炭孔道内部碳基质壁面含有丰富的有利于CO2分子物理吸附与输运牵引的吡啶/吡啶酮N,以及更利于CO2分子输运吸附的孔径分布情况。

    一种用于抑制固体氧化物燃料电池铬中毒的复合阴极及其制备方法

    公开(公告)号:CN113285077B

    公开(公告)日:2022-08-12

    申请号:CN202110545212.8

    申请日:2021-05-19

    Abstract: 一种用于抑制固体氧化物燃料电池铬中毒的复合阴极及其制备方法,它涉及复合阴极的制备方法。它是要解决现有的固体氧化物燃料电池LSCF阴极的易铬中毒的技术问题。本发明的复合阴极由LSCF颗粒层和钡镍铁基氧化物层组成,其中钡镍铁基氧化物层包覆在LSCF颗粒层上。制备方法:一、制备LSCF颗粒;二、将LSCF颗粒烧结在固体电解质片上,得到LSCF阴极;三、配制BNF浸渍前驱液;四、将BNF浸渍前驱液浸涂在LSCF阴极再烧结,得到用于抑制固体氧化物燃料电池铬中毒的复合阴极。本发明的复合电极在常温和高温条件下均具有良好的稳定性,在800℃下工作120h无变化,可用于固体氧化物燃料电池领域。

    一种用于抑制固体氧化物燃料电池铬中毒的复合阴极及其制备方法

    公开(公告)号:CN113285077A

    公开(公告)日:2021-08-20

    申请号:CN202110545212.8

    申请日:2021-05-19

    Abstract: 一种用于抑制固体氧化物燃料电池铬中毒的复合阴极及其制备方法,它涉及复合阴极的制备方法。它是要解决现有的固体氧化物燃料电池LSCF阴极的易铬中毒的技术问题。本发明的复合阴极由LSCF颗粒层和钡镍铁基氧化物层组成,其中钡镍铁基氧化物层包覆在LSCF颗粒层上。制备方法:一、制备LSCF颗粒;二、将LSCF颗粒烧结在固体电解质片上,得到LSCF阴极;三、配制BNF浸渍前驱液;四、将BNF浸渍前驱液浸涂在LSCF阴极再烧结,得到用于抑制固体氧化物燃料电池铬中毒的复合阴极。本发明的复合电极在常温和高温条件下均具有良好的稳定性,在800℃下工作120h无变化,可用于固体氧化物燃料电池领域。

    基于应力设计提高固体氧化物燃料电池阴极稳定性的方法

    公开(公告)号:CN112670521A

    公开(公告)日:2021-04-16

    申请号:CN202011578482.0

    申请日:2020-12-28

    Abstract: 基于应力设计提高固体氧化物燃料电池阴极稳定性的方法,它涉及提高固体氧化物燃料电池阴极稳定性的方法。它是为了解决现有的固体氧化物燃料电池长期工作过程中阴极Sr元素偏析而造成阴极稳定性差的技术问题,本方法是:在阴极材料表面包覆一层热膨胀系数小于阴极材料的第二相材料,形成核壳结构复合材料制备阴极材料;再烧结在电解质片的一侧,得到复合阴极。本发明基于材料晶格应力的角度来设计高稳定性的固体氧化物燃料电池阴极。用第二相材料与阴极材料之间热膨胀系数的差异,对阴极材料内部产生压应力,抑制元素表面偏析,从而提高阴极的稳定性。可用于固体氧化物燃料电池领域。

    一种气热共储系统及其运行方法
    7.
    发明公开

    公开(公告)号:CN117180917A

    公开(公告)日:2023-12-08

    申请号:CN202311268931.5

    申请日:2023-09-28

    Abstract: 本发明提供一种气热共储系统及其运行方法,属于储能技术领域,所述气热共储系统包括吸附塔、风机和换热器,吸附塔内设置有二氧化碳吸附剂;吸附塔的出气口设置有第一管路,风机的进风口通过第一管路与吸附塔的出气口连接,风机的出风口通过第二管路与换热器的第一进气口连接,换热器的第一出气口通过第三管路与吸附塔的进气口连接,换热器上还设置有第二进气口和第二出气口。本发明能够通过控制风机的风速以及进入吸附塔内的气体温度稳定,能够保证变温段以稳定的速度向前推移,从而实现排气或储气温度和排气或储气流量的稳定,解决吸附剂非线性升温和吸附剂非线性吸附和脱附的问题,满足上下游设备的气量需求,简化气热共储系统的控制策略。

    一种基于NASICON型电解质的复合固态电解质薄膜及其制备方法

    公开(公告)号:CN111799503A

    公开(公告)日:2020-10-20

    申请号:CN202010708032.2

    申请日:2020-07-21

    Abstract: 一种基于NASICON型电解质的复合固态电解质薄膜及其制备方法。本发明属于全固态锂电池领域。本发明的目的在于解决目前刚性无机固态电解质与电极界面相容性差、聚合物基固态电解质离子电导率过低,以及具有聚合物界面层的LATP基全固态锂电池室温极化大,需在高温下运行的技术问题。产品:是由NASICON型固态电解质粉体、聚合物和锂盐经溶液铸膜法制备而成。方法:一、将固态电解质粉体、聚合物、锂盐加入溶剂中搅拌形成均匀的浆料;二、将所述浆料涂布到玻璃板基体上,干燥后得到复合型固态电解质薄膜;三、将复合型固态电解质薄膜在电解液中浸润,然后吸干电解质薄膜表面的电解液,真空干燥后得到复合型固态电解质。

    一种LATP基全固态锂电池用增强型聚合物界面层的制备方法

    公开(公告)号:CN110943199A

    公开(公告)日:2020-03-31

    申请号:CN201911293875.4

    申请日:2019-12-16

    Abstract: 一种LATP基全固态锂电池用增强型聚合物界面层的制备方法;属于固态锂电池领域。本发明解决了LATP电解质和锂电极不兼容的问题。本发明方法如下:一、将聚合物和锂盐加入乙腈中,完全溶解,然后加入锂离子固态电解质粉末,惰性气氛下搅拌至完全溶解,得到聚合物凝胶溶液;二、LATP固态电解质抛光后,将聚合物凝胶溶液滴在LATP固态电解质的一侧,真空干燥后;三、再将聚合物凝胶溶液滴在LATP固态电解质的另一侧,真空干燥;即完成。本发明在具有高能量密度的全固态锂电池中的广阔应用前景。

    基于温差发电器的烧结余热回收系统

    公开(公告)号:CN219347379U

    公开(公告)日:2023-07-14

    申请号:CN202320654629.2

    申请日:2023-03-29

    Abstract: 本实用新型涉及基于温差发电器的烧结余热回收系统,属于烧结矿热利用技术领域。解决烧结矿余热利用率低的问题。包括锅炉、温差发电器和风箱,台车的上部与锅炉的入口建立安装,台车的侧面安装有温差发电器,台车的下部安装有风箱,所述温差发电器包括热端板、半导体和冷端板,若干所述半导体串联,半导体的两端分别设置热端板、冷端板。在保证烧结矿降温的同时,做到了热量应收尽收,锅炉充分回收热风中携带的能量,温差发电器回收温度相对较低的台车显热,能量得到梯级利用,提高余热利用率。

Patent Agency Ranking