-
公开(公告)号:CN109188476A
公开(公告)日:2019-01-11
申请号:CN201811101023.6
申请日:2018-09-20
Applicant: 哈尔滨工业大学 , 北京机电工程总体设计部
IPC: G01S19/41
Abstract: 本发明提出了垂直返回运载器着陆段差分卫星导航试验验证方法及系统,属于导航技术领域。所述垂直返回运载器着路段差分导航试验验证方法采用一台导航接收机、普通测量天线和电台设立地面临时基站,使用旋翼飞行器搭载的卫星导航接收机、航空测量天线和电台模拟垂直返回运载器着陆段飞行,通过地面临时基站计算差分修正量并通过电台发送至旋翼飞行器上的导航设备进行卫星导航差分解算,通过外部测量装置进行场地标定,通过两台高速相机对旋翼飞行器实际飞行轨迹进行测量用于考核差分卫星导航精度。具有试验方法简单、成本低和可靠性高的特点。
-
公开(公告)号:CN109188476B
公开(公告)日:2020-05-08
申请号:CN201811101023.6
申请日:2018-09-20
Applicant: 哈尔滨工业大学 , 北京机电工程总体设计部
IPC: G01S19/41
Abstract: 本发明提出了垂直返回运载器着陆段差分卫星导航试验验证方法及系统,属于导航技术领域。所述垂直返回运载器着路段差分导航试验验证方法采用一台导航接收机、普通测量天线和电台设立地面临时基站,使用旋翼飞行器搭载的卫星导航接收机、航空测量天线和电台模拟垂直返回运载器着陆段飞行,通过地面临时基站计算差分修正量并通过电台发送至旋翼飞行器上的导航设备进行卫星导航差分解算,通过外部测量装置进行场地标定,通过两台高速相机对旋翼飞行器实际飞行轨迹进行测量用于考核差分卫星导航精度。具有试验方法简单、成本低和可靠性高的特点。
-
公开(公告)号:CN118606790B
公开(公告)日:2025-04-15
申请号:CN202410787078.6
申请日:2024-06-18
Applicant: 哈尔滨工业大学
IPC: G06F18/241 , G06F18/2415 , G06F18/10 , G06N7/01
Abstract: 本发明公开了一种基于相对占比积分放大的快速机动检测方法,所述方法如下:通过不同的运动特性因子构建不同的机动表征模型,确定运动模式;设计机动概率求解函数;设计不同运动模式的运动特性因子的阈值,综合滤波估计的运动特性因子计算飞行器此时与每个预设运动模式的匹配程度参数;解算各类运动模式的对应机动概率,求解不同机动概率的相对占比,将机动概率的相对占比进行积分得到修正的积分型机动概率,放大不同运动模式对应的机动概率间的差距;由修正的积分型机动概率判断飞行器的运动模式。本发明通过采用机动表征模型,能够区分飞行器多种先验运动模式,利用机动概率求解和相对占比积分放大的方法,实现对高超声速飞行器的快速机动检测。
-
公开(公告)号:CN118884831B
公开(公告)日:2025-01-14
申请号:CN202410935960.0
申请日:2024-07-12
Applicant: 哈尔滨工业大学
IPC: G05B13/04
Abstract: 本发明公开了一种面对称飞行器翻转180度的滚转角在线自适应规划方法,所述方法包括如下步骤:S1、建立空气密度模型;S2、建立滚转操纵力矩系数模型;S3、建立滚转操纵力矩模型;S4、设置调整系数;S5、建立滚转角指令的幅值模型;S6、建立滚转角变化频率模型;S7、建立滚转角指令模型;S8、建立转角指令执行模型。该方法利用正余弦曲线及角度与角速度的关系,解决角度指令的一阶导数不连续、积分误差引起的指令偏差及规划策略复杂等实际工程问题;利用滚转力矩与飞行器响应速度密切相关的物理特性,从增加滚转角变化率和减少转动角度两个维度,解决固定转动周期和转动方向会降低最大射程能力的策略问题。
-
公开(公告)号:CN117494449A
公开(公告)日:2024-02-02
申请号:CN202311505723.2
申请日:2023-11-13
Applicant: 哈尔滨工业大学
IPC: G06F30/20 , G06F30/28 , G06F30/15 , G06F119/14
Abstract: 一种变翼长变尾裙导弹气动快速计算方法,属于飞行器控制技术领域。方法如下:利用Fluent进行导弹的参数化气动仿真计算;进行基础样本点气动计算;进行测试点气动计算;测试点气动数据精度判断;构建变形飞行器动力学仿真平台。本发明针对弹翼、尾裙结构尺寸可变的变外形高超声速导弹,基于Fluent气动仿真获取少量的基础样本点,根据插值精度再额外补充部分样本点,根据数量相对较少的气动样本点快速计算各马赫数、攻角、结构尺寸条件下考虑力热耦合效应的高超声速气动系数,大幅减少了针对变翼长、变尾裙导弹气动计算的样本点数量,在满足精度需求的前提下有效降低了气动计算成本。
-
公开(公告)号:CN117270549A
公开(公告)日:2023-12-22
申请号:CN202311054008.1
申请日:2023-08-21
Applicant: 哈尔滨工业大学 , 北京控制与电子技术研究所 , 北京航天长征飞行器研究所 , 中国人民解放军96901部队31分队
Abstract: 一种飞行器动力故障条件下的上升段轨迹凸优化方法,属于制导与控制技术领域,该方法设计了以飞行器俯仰、偏航角度为控制量,以机载故障辨识及导航系统输出的飞行器动力故障信息、故障时刻状态量和目标点轨道信息为输入量,自适应不同推力故障量级的轨迹凸优化求解流程。基于增广目标函数构建了多阶段序列凸优化切换条件,并给出了不同求解阶段的重规划策略、规划模型及对应的凸化处理方法,实现了故障条件下飞行器轨迹的高可靠求解。本方法能够适应故障后终端目标可达性未知条件下的上升段轨迹快速重规划需求,可提升序列凸优化求解过程的收敛性,求解框架简洁,可为具有相似动力学特性及飞行剖面的高速飞行器轨迹凸优化提供技术参考。
-
公开(公告)号:CN112486196B
公开(公告)日:2022-03-01
申请号:CN202011392656.4
申请日:2020-12-02
Applicant: 哈尔滨工业大学
IPC: G05D1/08
Abstract: 本发明公开了一种满足严格时间位置约束的飞行器快速轨迹优化方法。步骤1:设置参数;所述准状态下的参数包括载荷在t1时间入轨,标准入轨点为r1;假设通过轨迹在线重规划和自适应制导,载荷在t2时间入轨,实际入轨点为r2;步骤2:定义点坐标系;坐标系原点OP为地心,xp轴在地心和目标轨道近地点连线上,指向近地点;步骤3:基于步骤1及步骤2的参数与点坐标系,再利用偏近点角φ的概念计算飞行器从r1飞到r2的时间Δt;步骤4:利用步骤1‑3与芯二级二次开机时间迭代修正法,校正卫星轨道入轨时间偏差。用以解决运载火箭应用的大推力液体火箭发动机其推力不可调节,无法准确控制入轨点,即无法对入轨位置进行约束的问题。
-
公开(公告)号:CN113534847A
公开(公告)日:2021-10-22
申请号:CN202110967458.4
申请日:2021-08-23
Applicant: 哈尔滨工业大学
IPC: G05D1/10
Abstract: 一种有动力可重复使用飞行器能量管理轨迹设计方法,属于轨迹设计与制导技术领域。所述方法包括如下步骤:确定再入飞行器参数,建立再入飞行器飞行动力学模型;设计飞行器飞行的侧向轨迹;设计飞行器飞行的纵向轨迹;根据剩余航程进行推演后确定攻角,得到全程控制量,完成轨迹设计。本发明适用于当飞行器能量不足以返回机场时的能量管理着陆问题,能量管理段的轨迹设计思路是先设计轨迹,在纵向和侧向运动已知的情况下获得状态量的变化,从而求得所需的控制量。对目前已有的无动力飞行器能量管理段轨迹设计方法进行改进,得到了有动力重复使用飞行器能量管理段轨迹设计的方法。
-
公开(公告)号:CN109974538B
公开(公告)日:2020-09-04
申请号:CN201910227588.7
申请日:2019-03-25
Applicant: 哈尔滨工业大学
IPC: F42B15/01
Abstract: 本发明提出了一种垂直起降可重复使用运载器多终端约束上升段制导方法,属于运载火箭弹道制导控制技术领域。所述方法包括:步骤一、建立垂直起降可重复使用运载器动力学方程,并根据所述垂直起降可重复使用运载器动力学方程确定过程约束要求;步骤二、根据最优控制原理推导并获取最优控制条件;步骤三、根据制导任务需求,给定终端位置、速度和姿态角要求,并确定其满足的终端约束要求;步骤四、获取终端状态变量和协态变量;步骤五、根据所述满足终端约束的状态变量和协态变量初值,结合最优控制条件即可获得指导指令。本发明有效提高的垂直起降可重复使用运载器上升段制导方法的收敛性、工程实用性和精确性。
-
公开(公告)号:CN109782596B
公开(公告)日:2020-08-07
申请号:CN201910035928.6
申请日:2019-01-15
Applicant: 哈尔滨工业大学
Abstract: 本发明提出一种基于混合灵敏度的运载火箭子级返回大气层内飞行鲁棒控制方法。该方法设计了以栅格舵为执行机构、考虑不确定性的运载火箭子级控制系统模型,给出了鲁棒控制器的求解流程,从而保证了火箭子级在大参数不确定条件下的稳定和保性能飞行。本发明可有效提高运载火箭子级在大气层内飞行过程中控制系统的鲁棒性,通过充分利用栅格舵在大动压区的高控制效率,有效保障子级对制导指令的高精度跟踪。相较于经典控制方法和非线性及智能控制方法,本发明在实现控制系统对不确定参数的鲁棒稳定同时,也保证了较高的工程可实践性,将在运载火箭子级返回落区控制以及未来的垂直起降可重复使用领域发挥重要作用。
-
-
-
-
-
-
-
-
-