-
公开(公告)号:CN119871406A
公开(公告)日:2025-04-25
申请号:CN202510098670.X
申请日:2025-01-22
Applicant: 哈尔滨工业大学
IPC: B25J9/16
Abstract: 一种模拟卫星翻滚运动的机械臂系统规划控制方法,它涉及一种机械臂系统规划控制方法。本发明为了解决现有技术中失效卫星运动状态难以准确模拟,可模拟运动范围小的问题。本发明的步骤包括设定失效卫星的质心坐标系相对于失效卫星的抓捕面坐标系的位姿参数;设定失效卫星主惯量轴的惯量和相对质心坐标系的初始角速度;步骤3、由失效卫星相对质心坐标系的角速度积分得到失效卫星运动的位姿矩阵;步骤4、计算得到机械臂的期望位姿矩阵;步骤5、由机械臂关节控制器生成伺服机械臂的期望关节角度qd所需的驱动力矩,驱动机械臂运动,实现对失效卫星翻滚运动的模拟。本发明属于航天地面模拟实验技术领域。
-
公开(公告)号:CN117207134A
公开(公告)日:2023-12-12
申请号:CN202311296328.8
申请日:2023-10-08
Applicant: 哈尔滨工业大学
IPC: B25B27/14
Abstract: 适应空间在轨精细操作的多功能旋拧装置和旋拧方法,属于空间在轨服务技术领域。为了解决在空间操控任务中,实现捕获的同时,如何传递扭矩,实现旋拧任务的问题。本发明包括旋转支撑外壳、夹爪机构、驱动与传动机构和离合器机构;夹爪机构安装在旋转支撑外壳上,夹爪机构的动力输入端处于旋转支撑外壳内,夹爪机构的爪端处于旋转支撑外壳的顶部;驱动与传动机构安装在旋转支撑外壳内,驱动与传动机构的动力输出端与夹爪机构的动力输入端连接,并实现夹爪机构中夹爪的张开和闭合;离合器机构安装在旋转支撑外壳内并在驱动与传动机构的作用下协同旋转支撑外壳驱动夹爪机构旋转,实现对操作目标的旋拧。本发明主要用于空间操作目标的抓取与旋拧。
-
公开(公告)号:CN114654484A
公开(公告)日:2022-06-24
申请号:CN202210188511.5
申请日:2022-02-28
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种适用于大温差和剪口防逃逸设计的剪刀工具,属于空间专用工具领域。解决了空间机械臂系统在极高和极低温环境下,对物体表面松散电缆的拾取和剪切问题。它包括剪刀刀头、传动系统、动力输入接口、工具侧快换接口、工具侧导向插入接口和壳体,剪刀刀头为鹰嘴式结构,驱动装置通过动力输入接口连接动力源,带动传动系统的滚珠丝杠轴转动,从而带动丝杠螺母向左移动,通过多连杆带动动刀头逆时针转动,动刀头向定刀头合拢实现剪切。本发明在无人值守机器人臂末端操作时,确保剪刀工具具备拾取电缆的能力,也具备剪切不锈钢钢丝以及多股导线电缆能力,“鹰嘴”式负角度剪刀刃口形状的设计,解决了大剪口不易收拢导致线缆易逃逸的问题。
-
公开(公告)号:CN111150602B
公开(公告)日:2022-06-03
申请号:CN201811318487.2
申请日:2018-11-07
Applicant: 哈尔滨工业大学
IPC: A61H1/02
Abstract: 本发明提供了一种刚柔耦合的可延展的关节型软体外骨骼手套及方法,手套包括手套体,手套体包括手背区域、手心区域和手指区域,在手指区域设有食指关节康复软体外骨骼、中指关节康复软体外骨骼、无名指关节康复软体外骨骼、小指关节康复软体外骨骼和拇指关节康复软体外骨骼中的至少一个,在手心区域设有一个软体外骨骼手套基座,其固定在手掌上,在手背区域设有充气控制模块,五个手指关节康复软体外骨骼均通过一压板固定在软体外骨骼手套基座上,五个手指关节康复软体外骨骼均通过一充气管与充气控制模块连通。本发明所述的刚柔耦合的可延展的软体外骨骼手套,位置刚度高、承载能力大、有效驱动范围大,并且可以驱动单个手指运动。
-
公开(公告)号:CN114526296A
公开(公告)日:2022-05-24
申请号:CN202210241971.X
申请日:2022-03-11
Applicant: 哈尔滨工业大学
IPC: F16D55/02 , F16D65/097 , F16D65/16 , F16D69/02 , F16D121/20
Abstract: 一种电磁式无回程间隙失电制动器,解决了现有制动器无法实现零回程间隙及结构复杂的问题,属于电磁失电制动器技术领域。本发明包括壳体、线圈、衔铁摩擦盘、转动摩擦盘、膜片弹簧、连接件和压缩弹簧;线圈设置在壳体内,壳体、衔铁摩擦盘和转动摩擦盘依次同轴设置;压缩弹簧设置在壳体的圆柱孔中,一端与壳体接触,另一端与衔铁摩擦盘接触;膜片弹簧设置在壳体和衔铁摩擦盘之间,且通过连接件将膜片弹簧固定在衔铁摩擦盘和壳体上,连接件使膜片弹簧在周向不可转动,在轴向可伸缩。本发明采用膜片弹簧实现壳体与衔铁摩擦盘之间连接,可以实现制动力矩的长寿命、高稳定,同时可以保证转动摩擦盘与壳体之间无回程间隙。
-
公开(公告)号:CN111633669B
公开(公告)日:2022-05-13
申请号:CN201910156291.6
申请日:2019-03-01
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种模块化三自由度腱绳传动仿人灵巧机械手指及控制方法,机械手指包括指间关节、基关节、测试模块、驱动模块和由驱动模块带动的驱动腱绳,驱动腱绳用于驱动指间关节的弯曲展开和基关节的弯曲展开与侧摆运动,测试模块用于测试指间关节的俯仰力矩和基关节的俯仰力矩和侧摆力矩。本发明在指尖负载足够的情况下,即保证手指的灵活性与人手手指相近,又能将电机集中布置在手指的掌骨部分中,实现远距离腱绳传动,同时将手指的结构设计为模块化,简化装配和维护。
-
公开(公告)号:CN109828717B
公开(公告)日:2022-04-12
申请号:CN201910098946.9
申请日:2019-01-31
Applicant: 哈尔滨工业大学
Abstract: 多个旋转变压器的并行数据采集电路及自动采集方法,它涉及多个旋转变压器数据输出的采集电路以及数据输出的自动采集方法。解决同时采集多个旋转变压器的数据输出采用串行数据输出时数据传输速度较慢的问题。采集电路包括多个励磁电源、多个旋转变压器、多个差分滤波电路、多个AD2S80A芯片和一个现场可编程门阵列;AD2S80A的16位并行输出数据挂在同一条数据总线上,连接到现场可编程逻辑器件FPGA的IO管脚上,通过与每个AD2S80A相关的BUSY和ENABLE信号自动采集切换,实现多个独立旋变的16位并行数据信息采集,此方法广泛应用于机器人驱控一体的多轴传感器系统及需要快速采集的多通道并行数据转换领域。
-
公开(公告)号:CN105577052B
公开(公告)日:2019-01-04
申请号:CN201511029554.5
申请日:2015-12-31
Applicant: 哈尔滨工业大学
IPC: H02P8/14
Abstract: 一种基于FPGA的步进电机无抖动驱动控制系统及基于该系统的控制方法,涉及步进电机控制领域。解决了传统步进电机控制系统无法避免驱动时序控制精准性差和对外通信接口不够丰富和电气系统结构复杂的问题。该系统上位机通过串行通信总线与FPGA控制器实现数据交互,FPGA控制器向数字信号隔离模块输出脉冲信号、方向信号、使能信号和模式信号,数字信号隔离模块的控制信号输出端与步进电机驱动模块的控制信号输入端连接,步进电机驱动模块驱动外部电机,电源隔离模块分别与FPGA控制器、数字信号隔离模块和步进电机驱动模块连接。采用FPGA和集成步进电机功率驱动芯片,极大降低步进电机控制驱动系统的电气结构复杂性,同时兼顾多种串行通信方式拓展能力。
-
公开(公告)号:CN109115389A
公开(公告)日:2019-01-01
申请号:CN201811267967.0
申请日:2018-10-29
Applicant: 哈尔滨工业大学
IPC: G01L5/28
Abstract: 一种电磁式失电制动器吸合力测试装置,涉及一种制动器的试验装置。本发明为解决现有的吸合力测试装置无法满足精确测量制动器电磁吸合力的问题。本发明包括轴向位移精确调整装置、测力传感器、衔铁摩擦盘支撑装置、衔铁摩擦盘、制动器壳体、电磁线圈和支撑架;测力传感器的一端连接在轴向位移精确调整装置上,另外一端与衔铁摩擦盘支撑装置的一端连接,衔铁摩擦盘支撑装置的另外一端与衔铁摩擦盘一侧固定连接;测力传感器在轴向位移精确调整装置的带动下沿着测力传感器的行程方向位移,电磁线圈安装在制动器壳体内的环形凹槽中,制动器壳体与衔铁摩擦盘通过电磁线圈产生的电磁力进行磁力连接。本发明用于精确测量电磁线圈对衔铁摩擦盘产生吸合力。
-
公开(公告)号:CN104020773B
公开(公告)日:2016-09-14
申请号:CN201410264716.2
申请日:2014-06-13
Applicant: 哈尔滨工业大学
IPC: G05D1/08
Abstract: 一种基于控制周期自适应时钟同步的加速度最优空间机器人在线轨迹规划方法,本发明涉及一种基于控制周期自适应时钟同步的加速度最优空间机器人在线轨迹规划方法。本发明的目的是解决空间机器人控制中由于上下位机的时钟不同步及关节层轨迹加速度的剧烈变化引起的机器人运动过程中的不平稳问题。步骤一、建立在一个轨迹段规划周期内具有最优加速度的空间机器人关节轨迹曲线位置、速度及加速度的数学模型,并得到关节轨迹方程;步骤二、依据关节轨迹插补的连续性条件,求取步骤一中关节轨迹方程中的参数,并进行关节空间轨迹的连续规划;步骤三、在关节空间轨迹的连续规划的基础上进行同步控制。本发明应用于机器人控制领域。
-
-
-
-
-
-
-
-
-