基于参数整定的同步磁阻电机零低速无传感器控制方法

    公开(公告)号:CN118984097A

    公开(公告)日:2024-11-19

    申请号:CN202411064928.6

    申请日:2024-08-05

    Abstract: 一种基于参数整定的同步磁阻电机零低速无传感器控制方法,属于同步磁阻电机控制技术领域。本发明针对同步磁阻电机零低速无传感器控制受到电机饱和及耦合特性影响,产生位置误差影响电机控制可靠性的问题。包括定义解耦轴系diqi和真实轴系drqr;确定解耦角度并构建解耦轴系diqi电压高频模型;基于异步旋转轴系m轴下的高频电流响应信号表达式进行参数辨识;确定有效磁链矢量表达式并基于辨识结果进行参数整定;在测量d轴注入高频正弦电压通过测量轴系dq的高频电压分量表达式计算得到测量轴系dq高频磁链分量表达式,进而得到测量轴系dq的高频有效磁链矢量表达式,计算得到补偿后电角度θer。本发明用于同步磁阻电机无传感器控制。

    考虑耦合特性的双三相电机交直轴电感辨识方法

    公开(公告)号:CN117879424B

    公开(公告)日:2024-06-25

    申请号:CN202410042824.9

    申请日:2024-01-11

    Abstract: 一种考虑耦合特性的双三相电机交直轴电感辨识方法,属于双三相电机电感辨识领域。本发明针对电机交直轴电感会受到磁场饱和的影响,影响电机控制精度的问题。包括:根据双三相绕组的电感和电流,得到基于耦合的双三相电压方程,进行坐标变换得到dq轴系的电压方程,再得到dq轴高频电压方程;构造双三相绕组的相对旋转轴系,得到旋转轴系和dq轴系注入高频电压表达式;对dq轴高频电压方程进行变换得到高频电压注入过程中的dq轴高频电流幅值表达式,再坐标变换得到旋转轴系高频电流幅值表达式;对旋转轴系注入的高频电压和电流进行采样,结合旋转轴系注入高频电压和高频电流幅值的表达式进行计算,得到交直轴电感辨识值。本发明用于电感辨识。

    基于特征信号提取的无电解电容永磁电机驱动系统拍频抑制方法

    公开(公告)号:CN118100721A

    公开(公告)日:2024-05-28

    申请号:CN202410461970.5

    申请日:2024-04-17

    Abstract: 一种基于特征信号提取的无电解电容永磁电机驱动系统拍频抑制方法,属于电机控制技术领域。本发明针对无电解永磁同步电机驱动系统中机侧电流的谐波电流和基波电流相互作用引发的拍频现象,导致电流失真的问题。包括:步骤一:提取d轴电流和q轴电流的脉动分量和直流量,重构获得表征拍频电流包络幅值的电流特征信号;构建电流特征信号的闭环,以0作为闭环的电流特征信号给定值,通过比例谐振控制器进行控制,生成调节角度;将调节角度叠加到转速位置观测器输出的观测角度上,得到调节后观测角度;输入矢量控制中的反Park变换环节,得到调节后α轴电压给定和调节后β轴电压给定,施加到SVPWM控制环节中。本发明方法用于抑制拍频信号。

    无电解电容永磁同步电机驱动系统线性调制区扩展方法

    公开(公告)号:CN115395851B

    公开(公告)日:2023-06-13

    申请号:CN202211151505.9

    申请日:2022-09-21

    Abstract: 一种无电解电容永磁同步电机驱动系统线性调制区扩展方法,属于电机控制技术领域。本发明针对电机驱动系统直流侧电解电容换成小容值薄膜电容后,母线电压的波动为SVPWM控制的电压矢量作用时间引入了额外的波动,降低驱动系统的线性调制裕度的问题。包括:提取母线电压采样值udc_s中网侧电压六倍频的谐波信号和网侧电压十二倍频的谐波信号;采用控制单元对两种谐波信号进行幅值和相位的调整,获得网侧电压六倍频和十二倍频谐波信号的补偿角度,相加获得最终谐波补偿角度,再叠加到无位置传感器矢量控制的转速位置观测器观测角度上,得到补偿后电机位置;将补偿后电机位置加入无位置传感器矢量控制中。本发明用于扩展电机驱动系统的线性调制区。

    考虑交叉耦合效应的永磁同步电机永磁磁链在线辨识方法

    公开(公告)号:CN116169916A

    公开(公告)日:2023-05-26

    申请号:CN202211105271.4

    申请日:2022-09-09

    Abstract: 一种考虑交叉耦合效应的永磁同步电机永磁磁链在线辨识方法,属于永磁同步电机永磁磁链辨识技术。本发明针对现有永磁同步电机磁链辨识方法未考虑电机交叉耦合影响,造成磁链观测结果误差大的问题。包括:在电机在线稳定工况下,向电机dq轴注入正弦电流信号实现三相直流信号注入;计算电机定子电阻;通过电流环向电机d轴注入两组直流偏置电压,建立三个电机电压方程,再作差得到两个消除了磁链项的电机电压差方程;求解获得电机d轴自感Ld和电机dq轴互感Ldq;建立考虑到交叉耦合的dq轴电压方程,基于电机定子电阻、电机d轴自感Ld和电机dq轴互感Ldq计算获得电机永磁磁链。本发明用于永磁同步电机永磁磁链的在线辨识。

    永磁同步电机高转速下转子初始位置和转速检测方法

    公开(公告)号:CN114710073B

    公开(公告)日:2022-10-25

    申请号:CN202210386129.5

    申请日:2022-04-13

    Abstract: 永磁同步电机高转速下转子初始位置和转速检测方法,属于电机控制技术领域。本发明针对传统零电压矢量脉冲法在转子初始位置和转速的检测中依赖电机参数的问题。包括对永磁同步电机数学模型施加第一个零电压矢量脉冲,计算获得第一个脉冲零点处转子实际位置角;再在第二个选定时间点施加第二个零电压矢量脉冲,获得第二个脉冲零点处转子实际位置角;进一步计算获得第一阶段转子转速;同理获得第三个脉冲零点处转子实际位置角;在此基础上获得第二阶段转子转速;根据前两阶段转子转速确定选定投切时间点的转子转速;再由第二和第三个脉冲零点处转子实际位置角确定选定投切时间点的转子实际位置角。本发明可脱离开电机参数获得转子初始位置和转速。

    永磁同步电机无位置传感器控制转子位置误差观测方法

    公开(公告)号:CN114785208A

    公开(公告)日:2022-07-22

    申请号:CN202210542156.7

    申请日:2022-05-18

    Abstract: 一种永磁同步电机无位置传感器控制转子位置误差观测方法,属于电机转子位置误差观测技术领域。本发明针对现有电机无传感器位置观测方法依靠电机电压方程实现,受电机状态变化影响获取的转子位置不准确的问题。包括:在电机确定负载工况下,以选定扫描步长在电机恒转矩曲线上进行工作点扫描,并确定MTPA工况点;由MTPA工况点对应的最小电流矢量幅值is,获得同步旋转轴系dq和存在位置误差的控制轴系d'q'之间的转子位置误差θerr;所述转子位置误差θerr用于对电机转子位置进行补偿。本发明具有较高的鲁棒性和可靠性。

    周期互补高频方波注入的无传感器控制方法

    公开(公告)号:CN113489410B

    公开(公告)日:2022-06-24

    申请号:CN202110800671.6

    申请日:2021-07-15

    Abstract: 一种周期互补高频方波注入的无传感器控制方法,属于电机无位置传感器控制技术领域。本发明为解决现有电机无位置传感器控制中采用的高频信号注入法,由于电感交叉耦合因素影响导致转子估计位置存在偏置误差的问题。包括:分别向永磁同步电机同步观测轴系的d轴和q轴注入周期互补的方波电压信号,获得d轴和q轴高频响应电流,进行PWM周期离散化处理,得到两个阶段的离散转子位置误差信号,并得到不含交叉耦合项的解耦后转子位置误差信号,再经滑动平均滤波得到最终转子位置误差信号,并进一步得到平滑连续的估计转子位置信号和转速信号作为反馈信号对永磁同步电机进行控制。本发明可获得较高的转子位置观测精度。

    永磁同步电机在线参数辨识方法

    公开(公告)号:CN112054730B

    公开(公告)日:2022-03-01

    申请号:CN202010803088.6

    申请日:2020-08-11

    Abstract: 本发明提出永磁同步电机在线参数辨识方法,所述方法包括包括高频电压注入环节,信号提取FFT环节,延时补偿环节和参数辨识环节;所述方法可以实现电机负载及温度等工作条件发生变化时,在不改变电机实际运行工况且不影响电机动态性能的情况下,实时地且解耦地辨识出永磁同步电机电阻、d、q轴电感和磁链等参数。同时参数辨识数据经过特殊数据处理算法可直接用于后续电机运行中,无需再次重复参数辨识过程。

    永磁同步电机驱动系统的三相电流重构方法

    公开(公告)号:CN110488192B

    公开(公告)日:2022-01-14

    申请号:CN201910865875.0

    申请日:2019-09-12

    Abstract: 本发明的永磁同步电机驱动系统的三相电流重构方法涉及一种使用单电流传感器采样的三相电流重构方法,目的是为了克服现有单电阻采样电流重构技术中采用移相补偿方式存在重构精度低的问题,方法包括如下步骤:通过构建期望信号方程,得到期望电流信号;从母线电流信息中提取出三相电流信息;通过滑模观测器观测得到A相电流期望值、B相电流期望值和C相电流期望值;再得到A相电流误差、B相电流误差和C相电流误差;由误差修正期望电流信号,得到观测值;将观测值进行Clark变换,得到实际的电机三相电流值。

Patent Agency Ranking