-
公开(公告)号:CN117004853A
公开(公告)日:2023-11-07
申请号:CN202311207079.0
申请日:2023-09-19
Applicant: 吉林大学
Abstract: 本发明提供了一种低成本高强塑铸造镁合金及其制备方法,属于金属材料领域。所述铸造镁合金按照质量百分比计,由如下成分组成:Zn:1~2.2%、Y:0.5~1%、Zr:0.2~0.5%、Nd:0.2~0.6%、Dy:0.25~1%,不可避免的杂质含量≤0.1%,余量为镁。制备方法包括合金熔炼、铸造成型、热处理等步骤。本发明有效降低了镁基体中合金元素固溶度,显著细化合金中沿晶界分布的粗大W相,有效提升合金力学性能。
-
公开(公告)号:CN116969745A
公开(公告)日:2023-10-31
申请号:CN202310960772.9
申请日:2023-08-02
Applicant: 吉林大学
IPC: C04B30/02 , C04B111/40
Abstract: 本发明公开了一种纳米纤维素浇注法增强的二氧化硅气凝胶复合材料的制备方法,属于复合材料领域。所述复合材料包括以二氧化硅气凝胶为基体,秸秆提取的纳米纤维素为增强体,采用浇注法复合而成的复合材料。本发明的纳米纤维素增强二氧化硅气凝胶复合材料制备简单,在保持低热导率同时强度更高、掉渣掉粉现象减少、成本更低,还达到废物利用、环保节约的效果。
-
公开(公告)号:CN115678162B
公开(公告)日:2023-09-26
申请号:CN202211357847.6
申请日:2022-11-01
Applicant: 吉林大学
Abstract: 本发明提出了一种纤维素纳米纤维/聚丙烯复合材料制备方法。本发明从汉麻秸秆中提取纤维素纳米纤维,纤维素纳米纤维作为复合材料增强体和制备Pickering乳液的材料,利用Pickering乳液将纤维素纳米纤维均匀分散在聚丙烯表面以制备纤维素纳米纤维/聚丙烯复合材料。本发明所制备的纤维素纳米纤维/聚丙烯复合材料界面结合良好,具有轻质高强等特点,生产成本低,易于实现规模化生产。
-
公开(公告)号:CN109622655B
公开(公告)日:2023-06-23
申请号:CN201910065999.0
申请日:2019-01-24
Applicant: 吉林大学
IPC: B21C37/00
Abstract: 本发明公开了一种镁合金变截面轧制模压复合成型设备及方法,属于有色金属塑性成型领域。本发明主要目的是实现镁合金变截面轧制成型,解决镁合金变截面成型的难题,本发明将通过轧制和模压成型的复合工艺,轧制变截面镁合金。具体加工工艺为:首先将轧制坯料放置在上、下模板间的型槽内,上、下模板在导轨槽内送入上料位置,通过摩擦力把上、下模板带入上、下轧辊,通过上、下模板闭合,实现上、下模板型腔内坯料的模压成型。通过本发明的加工工艺可获得组织均匀、性能优化的变截面镁合金制件。
-
公开(公告)号:CN114990399B
公开(公告)日:2023-05-23
申请号:CN202210365584.7
申请日:2022-04-06
Applicant: 吉林大学
Abstract: 本发明提供了一种弱偏析高耐蚀镁合金及其制备方法,所述的镁合金按照质量百分比计,成分由如下组成:铝为0.5‑1%、锰为0.2‑1%、钙为0‑0.2%、稀土为0.05‑0.4%,不可避免的杂质≤0.02%,余量为镁。所述的镁合金制备方法包括坩埚熔炼、氩气搅拌、斜板浇铸以及倾角铸轧四个步骤。本发明提高了镁合金铸轧过程溶质场的分布均匀性,弱化了铸轧偏析倾向,改善了腐蚀均匀性。通过钙‑稀土掺杂与倾角铸轧的协同作用,促进Al8Mn4RE和(Mg,Al)2Ca不连续网状复合相形成,发挥第二相屏障效应,阻碍腐蚀穿晶扩张;促进异质腐蚀产物膜生长,阻止氯离子向基体渗透,提高腐蚀膜阻抗特性,显著改善合金耐蚀性能。
-
公开(公告)号:CN116103548A
公开(公告)日:2023-05-12
申请号:CN202211639326.X
申请日:2022-12-20
Applicant: 吉林大学
Abstract: 本发明提供了一种高时效硬化响应的Al‑Mg‑Si系铝合金及其制备方法,所述的铝合金按质量百分比计,由以下成分组成:Mg:1.40‑1.58%;Si:1.02‑1.12%;Zn:2.50‑3.30%;Cu:0.46‑0.83%;Er:0‑0.2%;Ag:0‑0.35%;不可避免的杂质总和≤0.20%;余量为Al。所述铝合金的制备方法包括:熔炼、准快速凝固、阶梯均质、冷轧及中间退火、阶梯固溶、水淬和双级人工时效。本发明获得的Al‑Mg‑Si系铝合金在时效处理后(T6态)具有较高的时效硬化响应和力学性能,时效硬化增量为303~342MPa,时效态合金的屈服强度为385MPa~420MPa,并且在固溶处理后(T4态)具有较高的延伸率(33.2%~36.5%)。因此本发明在保持铝合金高成形性的基础上大幅度提高了铝合金时效硬化增量和时效性能,可广泛应用于车身覆盖件等产品,对汽车轻量化发展具有重要意义。
-
公开(公告)号:CN114990392A
公开(公告)日:2022-09-02
申请号:CN202210688011.8
申请日:2022-06-17
Applicant: 吉林大学
Abstract: 本发明公开了一种高性能、耐高温Al‑Mg‑Si系铝合金及其制备方法,所述的铝合金按质量百分比计,由以下成分组成:Mg:0.91‑1.10%;Si:1.21‑1.4%;Mn:0‑0.2%;Zr:0‑0.2%;Ag:0‑0.05%;不可避免的杂质总和≤0.20%;余量为Al。所述铝合金的制备方法包括:熔炼、铸轧、均质、冷轧、固溶和人工时效。本发明获得的Al‑Mg‑Si系铝合金具有较高的力学性能,并且在长期高温条件下,还能够保持较高的力学性能,使用寿命长。
-
公开(公告)号:CN110583245B
公开(公告)日:2021-04-27
申请号:CN201910991253.2
申请日:2019-10-18
Applicant: 吉林大学
Abstract: 本发明涉及一种自分检、无破损葵花籽收割装置,本发明的自分检、无破损葵花籽收割装置包括机架、钢筋钳口、输送机构、分检机构、脱籽机构、吸风机、液压升降机构、动力输出机构和底座。钢筋钳口用于收集向日葵盘,输送机构用于将采集到的葵盘输送到分检机构,分检机构用于分检出大直径和中直径葵盘,并将其分别输送到后续脱籽机构,双层脱籽机构用于将分检后的大、中葵盘分别进行脱籽处理;吸风机可以将葵花籽中的杂物分离出去。本发明实现了一次性完成葵盘收集、大中葵盘分检、脱籽、杂物分离和籽粒收集的葵盘收割过程,不存在拨禾轮对葵盘打击损失籽粒的问题。
-
公开(公告)号:CN111676520A
公开(公告)日:2020-09-18
申请号:CN202010572907.0
申请日:2020-06-22
Applicant: 吉林大学
Abstract: 本发明提供了一种麻纤维自然冷冻与机械联合脱胶方法,包括以下步骤:低温处理:将麻秆茎裸露放置在东北冬天-10~-30℃自然条件下30~90天;剥皮处理:将低温处理后的麻纤维放入剥皮机进行处理;机械拍打:使用软麻机,经过进料区、机械揉搓区、拍打除杂区、出料区和除杂装置,去除麻纤维束的胶质并使纤维分离;后处理工艺:先采用碱溶液清洗后,再采用蒸馏水多次洗涤纤维直至接近中性,烘干备用,完成脱胶。本发明的脱胶方法采用自然冷冻与机械联合脱胶,对比其他工艺方法,整体降低了处理成本,减少了污染物的排放,降低了麻纤维的损伤,提高了麻纤维的性能,是一种低成本高效环保的麻纤维脱胶工艺。
-
公开(公告)号:CN109878431B
公开(公告)日:2020-07-07
申请号:CN201910022900.9
申请日:2019-01-10
Applicant: 吉林大学
IPC: B60R13/02 , D06M10/00 , D06M13/513 , D06M13/127 , D01C1/02 , D04H1/4382 , D04H1/46 , D06M101/06 , D06M101/20
Abstract: 本发明公开了一种高性能环保玄武岩纤维/麻纤维增强聚丙烯复合汽车内饰板及其制备方法,属于汽车内饰件制造领域。该制备方法包括:麻纤维自然冷冻‑机械联合脱胶处理,偶联剂改性处理;玄武岩纤维深冷处理后添加偶联剂进行改性,并采用微编织聚丙烯纤维浸渍玄武岩纤维制成预浸料;再把三者按比例采用固相混纤的方式制成预制体;最后采用模压成型制成汽车顶棚内饰板。本发明解决了汽车顶棚的成型难、韧性低、不环保等问题,所生产的产品具有密度小、质量轻、耐高温、耐冲击、低VOC、刚韧性强、安全性高、环保性能突出等特点。
-
-
-
-
-
-
-
-
-