一种基于边缘光抑制点阵产生及独立控制的并行直写装置

    公开(公告)号:CN112666803B

    公开(公告)日:2024-02-13

    申请号:CN202110048240.9

    申请日:2021-01-14

    Abstract: 本发明公开了一种基于边缘光抑制点阵产生及独立控制的并行直写装置,包含两路光:一路光通过镀涡旋膜MLA产生涡旋抑制光阵列,同时利用SLM控制各涡旋光的位置和形貌,结合DMD独立调控涡旋光强度,实现聚合区域大小控制;另一路光通过MLA产生激发光点阵,同时利用SLM调控各激发光位置,实现激发光和涡旋光阵列的精密重合。本发明可产生刻写点大小独立可控的高质量PPI阵列,每个PPI光斑由激发光和涡旋抑制光组成;采用相同刻写点大小的PPI阵列进行加工,具有超高分辨率、高通量和高均匀度的优势,控制刻写点大小使其具有特定分布,还能实现灰度光刻功能,加工任意高均匀度曲面结构和真三维微结构,可应用于超分辨光刻。

    一种小型化高分辨高帧率光纤内窥成像装置及方法

    公开(公告)号:CN114504292A

    公开(公告)日:2022-05-17

    申请号:CN202210401135.3

    申请日:2022-04-18

    Abstract: 本发明公开了一种小型化高分辨高帧率光纤内窥成像装置及方法,装置包括激光器、光电探测器、控制电路板、算力服务器,物光的光路上设有声光偏转器、二向色镜、单根光纤以及相机,本装置在实时成像之前需对当前光纤的传输特性进行标定,对当前光纤的传输特性进行标定时,将光纤的输出端连接至相机,将相机采集的标定数据经控制电路板传递至算力服务器保存,用于光纤图像解调时使用;进行对样品的成像时,将相机从光纤输出端卸下,并将样品放置于光纤的输出端,本发明光路系统所包含的光学元件数量较少,体积较小,可显著减小光纤内窥装置的整体体积,有利于光纤内窥装置的小型化,可实现高分辨,高帧率的光纤内窥图像。

    一种全矢量调制的单光纤高信噪比三维成像方法及装置

    公开(公告)号:CN114488513B

    公开(公告)日:2024-01-16

    申请号:CN202210130711.5

    申请日:2022-02-12

    Abstract: 本发明公开了一种全矢量调制的单光纤高信噪比三维成像方法及装置,包括激光器、空间光调制器、偏振调制模块、正交偏振显微模块等。激光器产生的激发光经由空间光调制器及偏振调制模块后实现相位、偏振、振幅任意可控的光场。入射光纤后,通过正交偏振显微模块,重建得到全矢量传输矩阵。对传输矩阵数值处理来补偿长距离大曲率多模光纤中的模式耦合、模式损耗及偏振色散。并通过在光纤出射端的虚拟频率域添加传播因子来得到高信噪比的轴向扫描,兼具了高信噪比高分辨率大深度成像,使得可以在生物医学方面得到广泛应用。

    一种共聚焦内窥探头的装配方法及装置

    公开(公告)号:CN115781583A

    公开(公告)日:2023-03-14

    申请号:CN202310087101.6

    申请日:2023-02-09

    Abstract: 本发明公开了一种共聚焦内窥探头的装配方法及装置,使用镜面定位仪对微小距离进行微距的准确定位,本装配方法中所独特设计的多段式的保护套结构,完美配合本发明的装配流程,在保护内部光纤束和GRIN透镜的同时,实现对其位置的固定,并且可以实现屏蔽外部光信号干扰的功能,使本发明的共聚焦内窥探头的装配方法更具可行性和实用性。自主探索了微小镜头的设计与装配工艺,开发了一套完整的微小镜头装配流程,达到1.07μm的横向分辨率,整体成像视场达到230μm,能够紧贴样品表面进行成像,有利于实现对病变组织的细胞级成像。为后续侧向、红外大深度的镜头设计装配打下基础,有利于实现核心元器件的国产化,降低医疗设备成本,提升国民医疗水平。

    一种全矢量调制的单光纤高信噪比三维成像方法及装置

    公开(公告)号:CN114488513A

    公开(公告)日:2022-05-13

    申请号:CN202210130711.5

    申请日:2022-02-12

    Abstract: 本发明公开了一种全矢量调制的单光纤高信噪比三维成像方法及装置,包括激光器、空间光调制器、偏振调制模块、正交偏振显微模块等。激光器产生的激发光经由空间光调制器及偏振调制模块后实现相位、偏振、振幅任意可控的光场。入射光纤后,通过正交偏振显微模块,重建得到全矢量传输矩阵。对传输矩阵数值处理来补偿长距离大曲率多模光纤中的模式耦合、模式损耗及偏振色散。并通过在光纤出射端的虚拟频率域添加传播因子来得到高信噪比的轴向扫描,兼具了高信噪比高分辨率大深度成像,使得可以在生物医学方面得到广泛应用。

    一种快速大视场高分辨的光学内窥显微系统及方法

    公开(公告)号:CN114018873B

    公开(公告)日:2024-05-28

    申请号:CN202111319271.X

    申请日:2021-11-09

    Abstract: 本发明公开了一种大视场快速高分辨的光学内窥显微方法,所涉及整个系统包括光源、光学透镜、二维色散元件、孔径光阑、分束镜、探测器等,其中,二维色散元件、光纤和微型光学透镜被集成在光学内窥镜头端,该光源通过光频梳芯片的调制,出射光为光学电磁频域离散的光谱信号,进一步,所述电磁频域离散光谱信号通过二维色散元件,生成空间二维分布的共聚焦照明光斑阵列,并被用于对被观测样品进行二维共焦照明成像,结合锁模与干涉增强技术,通过对所获取样品表面信息干涉信息的傅里叶解析,得到被观测样品表面高分辨强度图像和相位信息,本发明所提方法借助飞秒脉冲光的超快特性,可以实现对被观测样品表面像的视频级成像。

    一种自适应散射的深穿透显微内窥成像方法、装置和介质

    公开(公告)号:CN116869483A

    公开(公告)日:2023-10-13

    申请号:CN202310864708.0

    申请日:2023-07-13

    Abstract: 本发明涉及一种自适应散射的深穿透显微内窥成像方法、装置和介质,方法包括以下步骤:S1、测量指定穿透深度下的光纤输入输出映射关系;S2、在相同的指定穿透深度下设置有生物样品时遍历有效像素;S3、遍历每个有效像素时,调节每个像素的相位常数的遍历范围,得到每个像素对应的使得光强为最大值的相位常数;S4、进行数据整合,得到一组与每个像素对应的自适应散射矩阵;S5、调用自适应散射矩阵作为相位参数,进行逐个像素的扫描,得到像素对应的光强,将光强组合为一帧灰度图像。与现有技术相比,本发明具有清晰地进行深层组织成像,有效地提高成像质量等优点。

    一种基于大色散镜头的双模态高分辨大深度显微内窥成像系统

    公开(公告)号:CN113349708A

    公开(公告)日:2021-09-07

    申请号:CN202110639676.5

    申请日:2021-06-08

    Abstract: 本发明公开了一种基于大色散镜头的双模态高分辨大深度显微内窥成像系统,包括光纤束共聚焦模块,OCT成像模块和内窥探头模块;所述光纤束共聚焦模块包括:激光器模块、共聚焦扫描模块和共聚焦成像模块;所述OCT成像模块包括扫频激光模块、样品臂模块、参考臂模块和干涉探测模块。本发明一次下镜就可实现多种功能,既能对病变部位进行高分辨高精度二维成像,又能对病变组织进行大深度三维成像,从而使医师能够对病变的显微结构做出更加精确的判断,并且不会对组织部位造成伤害,提高癌症的检出率和诊断水平。

    一种基于边缘光抑制点阵产生及独立控制的并行直写装置

    公开(公告)号:CN112666803A

    公开(公告)日:2021-04-16

    申请号:CN202110048240.9

    申请日:2021-01-14

    Abstract: 本发明公开了一种基于边缘光抑制点阵产生及独立控制的并行直写装置,包含两路光:一路光通过镀涡旋膜MLA产生涡旋抑制光阵列,同时利用SLM控制各涡旋光的位置和形貌,结合DMD独立调控涡旋光强度,实现聚合区域大小控制;另一路光通过MLA产生激发光点阵,同时利用SLM调控各激发光位置,实现激发光和涡旋光阵列的精密重合。本发明可产生刻写点大小独立可控的高质量PPI阵列,每个PPI光斑由激发光和涡旋抑制光组成;采用相同刻写点大小的PPI阵列进行加工,具有超高分辨率、高通量和高均匀度的优势,控制刻写点大小使其具有特定分布,还能实现灰度光刻功能,加工任意高均匀度曲面结构和真三维微结构,可应用于超分辨光刻。

    一种基于大色散镜头的双模态高分辨大深度显微内窥成像系统

    公开(公告)号:CN113349708B

    公开(公告)日:2023-05-26

    申请号:CN202110639676.5

    申请日:2021-06-08

    Abstract: 本发明公开了一种基于大色散镜头的双模态高分辨大深度显微内窥成像系统,包括光纤束共聚焦模块,OCT成像模块和内窥探头模块;所述光纤束共聚焦模块包括:激光器模块、共聚焦扫描模块和共聚焦成像模块;所述OCT成像模块包括扫频激光模块、样品臂模块、参考臂模块和干涉探测模块。本发明一次下镜就可实现多种功能,既能对病变部位进行高分辨高精度二维成像,又能对病变组织进行大深度三维成像,从而使医师能够对病变的显微结构做出更加精确的判断,并且不会对组织部位造成伤害,提高癌症的检出率和诊断水平。

Patent Agency Ranking