基于表面肌电信号进行手势识别的迁移学习方法和识别方法

    公开(公告)号:CN111046731B

    公开(公告)日:2023-07-25

    申请号:CN201911094608.4

    申请日:2019-11-11

    Abstract: 一种基于表面肌电信号进行手势识别的迁移学习方法,该方法以下步骤:采集新用户不同手势的表面肌电信号;将有标注的已有用户的不同手势的表面肌电信号数据作为源域数据,无标注的新用户的不同手势的表面肌电信号数据作为目标域数据,对新用户的不同手势的表面肌电信号数据进行分类并将其划分为候选集和残余项;将所述候选集作为源域数据,所述残余项作为目标域数据,对残余项中新用户的不同手势的表面肌电信号数据进行再次分类。

    用于预测众包数据的正确标签的方法及系统

    公开(公告)号:CN112766337A

    公开(公告)日:2021-05-07

    申请号:CN202110028695.4

    申请日:2021-01-11

    Abstract: 本发明提供了一种用于预测众包数据的正确标签的方法和系统,该方法利用了一种神经网络模型,该模型基于每个众包数据的所有初始标签的均值获取对应的众包数据的参考标签,通过训练获得;并利用神经网络模型获得每个众包数据的预测标签,基于每个众包数据的每个初始标签相对于预测标签的可信度迭代校准当前神经网络模型,直至神经网络模型收敛或精度持续下降。本发明中的方法和系统能够减少对深度学习中对众包数据工作者能力的依赖,从而提高深度学习模型的准确度和鲁棒性。

    基于迁移学习的阿尔兹海默病智能决策支持方法及系统

    公开(公告)号:CN112908466A

    公开(公告)日:2021-06-04

    申请号:CN202110041814.X

    申请日:2021-01-13

    Abstract: 本发明提出一种基于迁移学习的阿尔兹海默病智能决策支持方法和系统,包括通过拍照设备设备,采集患者眼底图像数据,同时利用辅助设备采集患者辅助生理数据,并进行补齐、归一化、滤波等预处理;对图片数据提取图像特征,对辅助序列数据,提取特征,并对不同传感器特征数据进行归一化与拼接;在传播方案获取与标签传播阶段,通过广义条件梯度下降算法对针对融合距离的目标函数进行优化,通过IBP算法获取梯度方向,通过线搜索获取步长,依次迭代直至收敛,根据获取的传播方案,将源域中已有的标定通过传播方案扩散至目标域未标定样本。从而获得更准确的目标域数据标定。

    超声波手势识别方法及系统

    公开(公告)号:CN106203380B

    公开(公告)日:2019-11-29

    申请号:CN201610576125.8

    申请日:2016-07-20

    Abstract: 本发明提供了一种融合情境感知信息的超声波手势识别方法,该方法同时采集超声波信号和与当前情境相关的情境信息,从采集的超声波信号获取手势特征,利用预先训练好的手势分类模型获取该手势特征属于预设的各种手势的概率;基于采集的情境信息确定各种手势在当前情境的下发生的概率;以及根据上述两种概率计算在当前情境中该手势特征属于预设的各种手势的概率并将其中最大概率对应的手势识别为与所采集的超声波信号对应的手势。该方法将手势信号与情境信息相融合,使用情境信息过滤用户的误操作手势、修正识别错误的手势,减少无效甚至错误的响应,从而提高了手势识别的准确率和鲁棒性,增强了人机交互体验。

    超声波手势识别方法及系统

    公开(公告)号:CN106203380A

    公开(公告)日:2016-12-07

    申请号:CN201610576125.8

    申请日:2016-07-20

    Abstract: 本发明提供了一种融合情境感知信息的超声波手势识别方法,该方法同时采集超声波信号和与当前情境相关的情境信息,从采集的超声波信号获取手势特征,利用预先训练好的手势分类模型获取该手势特征属于预设的各种手势的概率;基于采集的情境信息确定各种手势在当前情境的下发生的概率;以及根据上述两种概率计算在当前情境中该手势特征属于预设的各种手势的概率并将其中最大概率对应的手势识别为与所采集的超声波信号对应的手势。该方法将手势信号与情境信息相融合,使用情境信息过滤用户的误操作手势、修正识别错误的手势,减少无效甚至错误的响应,从而提高了手势识别的准确率和鲁棒性,增强了人机交互体验。

    一种分类识别模型构建方法

    公开(公告)号:CN111967495B

    公开(公告)日:2024-06-14

    申请号:CN202010639556.0

    申请日:2020-07-06

    Abstract: 本发明提供一种分类识别模型构建方法,用于构建用于小样本目标域的分类识别模型,包括如下步骤:S1、获得一个源域模型,其中所述源域模型是利用源域数据集训练集成模型生成的,所述源域模型包括多个个体分类器;S2、基于源域模型中每个个体分类器对源域数据集和目标域数据集的信息增益确定该个体分类器的特征信息增益评估指标;S3、基于每个分类器对应的特征信息增益评估指标采用预设调整策略对每个分类器进行重构,所有重构后的分类器组成目标域分类识别模型。本发明综合考虑了当前源域模型对目标域数据的分割准确度,及当前源域模型是否覆盖目标域中具有重要参考价值的属性特征,能够适应于样本数量小、标注困难的医疗诊断场景。

Patent Agency Ranking