用于预测众包数据的正确标签的方法及系统

    公开(公告)号:CN112766337A

    公开(公告)日:2021-05-07

    申请号:CN202110028695.4

    申请日:2021-01-11

    Abstract: 本发明提供了一种用于预测众包数据的正确标签的方法和系统,该方法利用了一种神经网络模型,该模型基于每个众包数据的所有初始标签的均值获取对应的众包数据的参考标签,通过训练获得;并利用神经网络模型获得每个众包数据的预测标签,基于每个众包数据的每个初始标签相对于预测标签的可信度迭代校准当前神经网络模型,直至神经网络模型收敛或精度持续下降。本发明中的方法和系统能够减少对深度学习中对众包数据工作者能力的依赖,从而提高深度学习模型的准确度和鲁棒性。

    一种用于识别运动强度的方法和系统

    公开(公告)号:CN113177455B

    公开(公告)日:2023-01-24

    申请号:CN202110442262.3

    申请日:2021-04-23

    Abstract: 本发明实施例提供了一种训练运动强度识别系统的方法,包括:A1、构建运动强度识别系统,其包括依次连接的数据预处理模块、并行卷积处理流、双线性池化模块和多任务学习模块,所述并行卷积处理流包括两条并行的卷积处理流;A2、通过数据预处理模块对经标注了标签的运动数据进行预处理,得到运动信息和对应的标签组成的训练集,其中,运动数据由惯性传感器采集得到,为运动数据标注的标签包括多种不同的运动强度标签和多种不同的运动行为标签;A3、用所述训练集训练所述运动强度识别系统;本发明从通道和空间两个维度对卷积层提取的特征进行优化,关注重要的特征,抑制不必要的特征,有助于提升运动强度的识别精度。

    用于预测众包数据的正确标签的方法及系统

    公开(公告)号:CN112766337B

    公开(公告)日:2024-01-12

    申请号:CN202110028695.4

    申请日:2021-01-11

    Abstract: 本发明提供了一种用于预测众包数据的正确标签的方法和系统,该方法利用了一种神经网络模型,该模型基于每个众包数据的所有初始标签的均值获取对应的众包数据的参考标签,通过训练获得;并利用神经网络模型获得每个众包数据的预测标签,基于每个众包数据的每个初始标签相对于预测标签的可信度迭代校准当前神经网络模型,直至神经网络模型收敛或精度持续下降。本发明中的方法和系统能够减少对深度学习中对众包数据工作者能力的依赖,从而提高深度学习模型的准确度和鲁棒性。(56)对比文件Ryan Drapeau.MicroTalk: UsingArgumentation to Improve CrowdsourcingAccuracy《.Proceedings, The Fourth AAAIConference on Human Computation andCrowdsourcing》.2016,

    一种用于识别运动强度的方法和系统

    公开(公告)号:CN113177455A

    公开(公告)日:2021-07-27

    申请号:CN202110442262.3

    申请日:2021-04-23

    Abstract: 本发明实施例提供了一种训练运动强度识别系统的方法,包括:A1、构建运动强度识别系统,其包括依次连接的数据预处理模块、并行卷积处理流、双线性池化模块和多任务学习模块,所述并行卷积处理流包括两条并行的卷积处理流;A2、通过数据预处理模块对经标注了标签的运动数据进行预处理,得到运动信息和对应的标签组成的训练集,其中,运动数据由惯性传感器采集得到,为运动数据标注的标签包括多种不同的运动强度标签和多种不同的运动行为标签;A3、用所述训练集训练所述运动强度识别系统;本发明从通道和空间两个维度对卷积层提取的特征进行优化,关注重要的特征,抑制不必要的特征,有助于提升运动强度的识别精度。

    一种生理语义一致的无袖带血压模型对比学习预训练方法

    公开(公告)号:CN119745355A

    公开(公告)日:2025-04-04

    申请号:CN202411622930.0

    申请日:2024-11-14

    Abstract: 本发明提供了一种生理语义一致的无袖带血压模型对比学习预训练方法,所述血压预测模型构建方法首先采用无标签PPG信号对模型进行无监督训练以提高模型的泛化能力,再采用有标签的PPG信号对模型进行有监督训练以训练模型的预测性能,最后采用少量的目标对象的有标签PPG信号对模型进行个性化训练以使模型具备预测目标对象血压数据的性能,其中,在无监督训练过程中,基于血压关键生理知识实现数据增强以确保增强数据的质量和实用性,并通过随机特征掩蔽、特征重采样以提高模型提取特征的多样性。本发明与现有的血压预测方法相比,减少了训练过程中有标签数据的需求量,同时,基于血压关键生理信息进行数据增强与特征重建以提高血压预测模型的泛化能力。

    一种基于水印嵌入的医疗系统联邦学习方法与医疗系统

    公开(公告)号:CN119724457A

    公开(公告)日:2025-03-28

    申请号:CN202411750631.5

    申请日:2024-12-02

    Abstract: 本发明提供了一种基于水印嵌入的医疗系统联邦学习方法,本发明的技术方案通过对医疗系统中各个客户端进行预设轮次的第一阶段训练以获得每个客户端的水印深度并基于每个客户端的水印深度评估每个客户端对水印任务的适配能力,基于每个客户端的水印深度重新配置自身的主任务与水印任务的比重并依此调整自身预设的损失函数,最后基于每个客户端调整后的损失函数对进行多轮联邦训练以使每个客户端获得一个嵌入水印的医疗任务模型,较现有水印嵌入技术,本发明通过医疗系统模型中的中心服务器与客户端协作实现水印嵌入,同时,基于每个客户端的水印任务适配能力调整每个客户端的水印任务与主任务的比重,提高水印任务性能的同时确保主任务的精度。

Patent Agency Ranking