一种用于识别运动强度的方法和系统

    公开(公告)号:CN113177455B

    公开(公告)日:2023-01-24

    申请号:CN202110442262.3

    申请日:2021-04-23

    Abstract: 本发明实施例提供了一种训练运动强度识别系统的方法,包括:A1、构建运动强度识别系统,其包括依次连接的数据预处理模块、并行卷积处理流、双线性池化模块和多任务学习模块,所述并行卷积处理流包括两条并行的卷积处理流;A2、通过数据预处理模块对经标注了标签的运动数据进行预处理,得到运动信息和对应的标签组成的训练集,其中,运动数据由惯性传感器采集得到,为运动数据标注的标签包括多种不同的运动强度标签和多种不同的运动行为标签;A3、用所述训练集训练所述运动强度识别系统;本发明从通道和空间两个维度对卷积层提取的特征进行优化,关注重要的特征,抑制不必要的特征,有助于提升运动强度的识别精度。

    用于预测众包数据的正确标签的方法及系统

    公开(公告)号:CN112766337A

    公开(公告)日:2021-05-07

    申请号:CN202110028695.4

    申请日:2021-01-11

    Abstract: 本发明提供了一种用于预测众包数据的正确标签的方法和系统,该方法利用了一种神经网络模型,该模型基于每个众包数据的所有初始标签的均值获取对应的众包数据的参考标签,通过训练获得;并利用神经网络模型获得每个众包数据的预测标签,基于每个众包数据的每个初始标签相对于预测标签的可信度迭代校准当前神经网络模型,直至神经网络模型收敛或精度持续下降。本发明中的方法和系统能够减少对深度学习中对众包数据工作者能力的依赖,从而提高深度学习模型的准确度和鲁棒性。

    用于预测众包数据的正确标签的方法及系统

    公开(公告)号:CN112766337B

    公开(公告)日:2024-01-12

    申请号:CN202110028695.4

    申请日:2021-01-11

    Abstract: 本发明提供了一种用于预测众包数据的正确标签的方法和系统,该方法利用了一种神经网络模型,该模型基于每个众包数据的所有初始标签的均值获取对应的众包数据的参考标签,通过训练获得;并利用神经网络模型获得每个众包数据的预测标签,基于每个众包数据的每个初始标签相对于预测标签的可信度迭代校准当前神经网络模型,直至神经网络模型收敛或精度持续下降。本发明中的方法和系统能够减少对深度学习中对众包数据工作者能力的依赖,从而提高深度学习模型的准确度和鲁棒性。(56)对比文件Ryan Drapeau.MicroTalk: UsingArgumentation to Improve CrowdsourcingAccuracy《.Proceedings, The Fourth AAAIConference on Human Computation andCrowdsourcing》.2016,

    一种用于识别运动强度的方法和系统

    公开(公告)号:CN113177455A

    公开(公告)日:2021-07-27

    申请号:CN202110442262.3

    申请日:2021-04-23

    Abstract: 本发明实施例提供了一种训练运动强度识别系统的方法,包括:A1、构建运动强度识别系统,其包括依次连接的数据预处理模块、并行卷积处理流、双线性池化模块和多任务学习模块,所述并行卷积处理流包括两条并行的卷积处理流;A2、通过数据预处理模块对经标注了标签的运动数据进行预处理,得到运动信息和对应的标签组成的训练集,其中,运动数据由惯性传感器采集得到,为运动数据标注的标签包括多种不同的运动强度标签和多种不同的运动行为标签;A3、用所述训练集训练所述运动强度识别系统;本发明从通道和空间两个维度对卷积层提取的特征进行优化,关注重要的特征,抑制不必要的特征,有助于提升运动强度的识别精度。

    一种图像分类模型训练方法、图像分类系统及分类方法

    公开(公告)号:CN118537637A

    公开(公告)日:2024-08-23

    申请号:CN202410609169.0

    申请日:2024-05-16

    Abstract: 本发明提供了一种图像分类模型训练方法,其包括:步骤S1、数据获取步骤:获取多个图像数据集,每个图像数据集与其他图像数据集属于不同的领域,每个图像数据集中包括多个不同类别的图像样本及其对应的类别标签和域标签,其中,类别标签指示图像样本对应的类别,域标签指示图像样本所属的图像数据集,且每个图像数据集拥有相同的类别标签集合;步骤S2、模型训练步骤:步骤S21、构建初始图像分类模型,其包括共享特征提取器、一个一类分支网络和多个二类分支网络;步骤S22、采用所述多个图像数据集对初始图像分类模型进行多次训练直至模型收敛。本发明提出的训练方法使模型具备了提取跨域不变特征和域正交不变特征的能力,使模型提高了分类准确率。

    一种认知障碍检测模型及其训练方法

    公开(公告)号:CN113057585B

    公开(公告)日:2022-08-30

    申请号:CN202110274276.9

    申请日:2021-03-15

    Abstract: 本发明提供一种认知障碍检测模型及其训练方法,所述认知障碍检测模型包括多模态信息表征模块、多模态信息融合模块、无监督深度聚类模块。所述多模态信息表征模块包括眼底图像数据表征网络、多模态生理信号数据表征网络。所述多模态信息融合模块与所述多模态信息表征模块相连接,用于将所述眼底图像数据的特征与多模态生理信号的特征进行融合,得到融合后的特征;所述无监督深度聚类模块与所述多模态信息融合模块相连接,用于根据所述融合后的特征基于无监督聚类模型进行认知障碍检测。

Patent Agency Ranking