一种基于增量学习对手势识别模型训练的方法

    公开(公告)号:CN117150292A

    公开(公告)日:2023-12-01

    申请号:CN202311074976.9

    申请日:2023-08-24

    Abstract: 本发明提供了一种基于增量学习对手势识别模型训练的方法,所述方法包括:获取经训练的旧手势识别模型,其包括用于从肌电信号数据提取手势特征的特征提取器;获取初始的新手势识别模型,其包括用于提取手势特征的特征提取器和用于根据手势特征进行手势识别的分类器;获取多个旧用户中每个旧用户的样本池中的训练样本以及新用户的训练样本,每个训练样本包括肌电信号数据和用于指示该肌电信号数据所属手势类别的标签;基于经训练的旧手势识别模型分别提取训练集中的各个训练样本中肌电信号数据的旧手势特征;以所述初始的新手势识别模型为基础,利用训练集对其进行多次迭代训练,最后一次训练完成得到经增量学习的新手势识别模型。

    一种分类识别模型构建方法

    公开(公告)号:CN111967495B

    公开(公告)日:2024-06-14

    申请号:CN202010639556.0

    申请日:2020-07-06

    Abstract: 本发明提供一种分类识别模型构建方法,用于构建用于小样本目标域的分类识别模型,包括如下步骤:S1、获得一个源域模型,其中所述源域模型是利用源域数据集训练集成模型生成的,所述源域模型包括多个个体分类器;S2、基于源域模型中每个个体分类器对源域数据集和目标域数据集的信息增益确定该个体分类器的特征信息增益评估指标;S3、基于每个分类器对应的特征信息增益评估指标采用预设调整策略对每个分类器进行重构,所有重构后的分类器组成目标域分类识别模型。本发明综合考虑了当前源域模型对目标域数据的分割准确度,及当前源域模型是否覆盖目标域中具有重要参考价值的属性特征,能够适应于样本数量小、标注困难的医疗诊断场景。

    一种分类识别模型构建方法

    公开(公告)号:CN111967495A

    公开(公告)日:2020-11-20

    申请号:CN202010639556.0

    申请日:2020-07-06

    Abstract: 本发明提供一种分类识别模型构建方法,用于构建用于小样本目标域的分类识别模型,包括如下步骤:S1、获得一个源域模型,其中所述源域模型是利用源域数据集训练集成模型生成的,所述源域模型包括多个个体分类器;S2、基于源域模型中每个个体分类器对源域数据集和目标域数据集的信息增益确定该个体分类器的特征信息增益评估指标;S3、基于每个分类器对应的特征信息增益评估指标采用预设调整策略对每个分类器进行重构,所有重构后的分类器组成目标域分类识别模型。本发明综合考虑了当前源域模型对目标域数据的分割准确度,及当前源域模型是否覆盖目标域中具有重要参考价值的属性特征,能够适应于样本数量小、标注困难的医疗诊断场景。

Patent Agency Ranking