-
公开(公告)号:CN116262660B
公开(公告)日:2024-06-11
申请号:CN202111539720.1
申请日:2021-12-15
申请人: 中国科学院福建物质结构研究所 , 闽都创新实验室
IPC分类号: C04B35/04 , C04B35/622 , C04B35/63 , H01L33/50 , H01S5/00
摘要: 本发明提供一种装载荧光粉的氧化镁复相陶瓷及其制备方法和应用。本发明所述氧化镁复相陶瓷包括氧化镁相和发光相,所述氧化镁相为连续相,所述发光相分散在氧化镁相中,所述发光相为荧光粉,所述发光相在氧化镁复相陶瓷中所占的比例为10wt%‑90wt%。本发明所述氧化镁复相陶瓷既保持荧光粉的良好的发光特性,同时提供高热导率、以及由高热导率带来的高饱和激光功率阈值、弱热致淬灭效应等优异性能,可应用于大功率照明、激光半导体照明等相关领域。本发明的制备方法采用低温烧结方式,制备温度低,工艺简单,具有成本低、成品率高,易于产业化等优点。
-
公开(公告)号:CN117800712A
公开(公告)日:2024-04-02
申请号:CN202211171265.9
申请日:2022-09-23
申请人: 中国科学院福建物质结构研究所 , 闽都创新实验室
IPC分类号: C04B35/057 , C04B35/622 , C04B35/64 , B24B1/00 , C09K11/02 , H01S3/16
摘要: 本发明公开一种高致密度CaO透明陶瓷材料及其制备方法,通过以CaO为原料,与烧结助剂经煅烧、压制成型、高温烧结得到所述CaO陶瓷。本发明的CaO透明陶瓷的致密度≥99%,具有较高的透光性,本发明的烧结温度低,相对于CaO荧光粉而言,高致密度的透明氧化钙陶瓷具有极低的吸水性,具有更长的使用寿命和更高的稳定性。且本发明的高致密度CaO透明陶瓷材料的制备方法简单,生产成本低,利于工业化生产,在光学、介电材料领域等具有重要的应用价值。
-
公开(公告)号:CN115010503A
公开(公告)日:2022-09-06
申请号:CN202210660440.4
申请日:2022-06-13
申请人: 闽都创新实验室 , 中国科学院福建物质结构研究所
IPC分类号: C04B35/64 , C04B35/645 , C04B35/505 , C04B35/053 , C04B35/057 , C04B35/50
摘要: 本发明公开了一种氧化物透明陶瓷材料烧结助剂的使用方法,通过在氧化物粉体中添加YF3的形式,实现了少量的烧结助剂在氧化物粉体中的均匀分散,低于传统烧结温度300℃条件下的液相烧结,通过小剂量烧结助剂便有效提高了助烧结的作用,获得氧化物透明陶瓷。所述YF3作为氧化物透明陶瓷烧结助剂的用量为0.125‑0.75at%在真空环境下较低的烧结温度1400‑1550℃进行烧结制备。所述YF3烧结助剂添加在球磨混合阶段加入,通过行星球磨搅拌方式和主成分一起混合均匀;不需要额外添加分散剂、粘结剂等有机高分子材料,成型后的陶瓷素坯体不需要在氧气氛或其他气氛下处理。
-
公开(公告)号:CN116262660A
公开(公告)日:2023-06-16
申请号:CN202111539720.1
申请日:2021-12-15
申请人: 中国科学院福建物质结构研究所 , 闽都创新实验室
IPC分类号: C04B35/04 , C04B35/622 , C04B35/63 , H01L33/50 , H01S5/00
摘要: 本发明提供一种装载荧光粉的氧化镁复相陶瓷及其制备方法和应用。本发明所述氧化镁复相陶瓷包括氧化镁相和发光相,所述氧化镁相为连续相,所述发光相分散在氧化镁相中,所述发光相为荧光粉,所述发光相在氧化镁复相陶瓷中所占的比例为10wt%‑90wt%。本发明所述氧化镁复相陶瓷既保持荧光粉的良好的发光特性,同时提供高热导率、以及由高热导率带来的高饱和激光功率阈值、弱热致淬灭效应等优异性能,可应用于大功率照明、激光半导体照明等相关领域。本发明的制备方法采用低温烧结方式,制备温度低,工艺简单,具有成本低、成品率高,易于产业化等优点。
-
公开(公告)号:CN116969761A
公开(公告)日:2023-10-31
申请号:CN202310832341.4
申请日:2023-07-07
申请人: 中国科学院福建物质结构研究所 , 闽都创新实验室
IPC分类号: C04B35/505 , C04B35/622 , C04B35/64 , C04B35/632 , C04B35/634
摘要: 本发明公开了一种有机体系压力注浆制备(Y1‑xRex)2O3:Rey透明陶瓷的方法,所述方法为:(1)将各反应原料与乙醇混合,加入磨球,球磨混合,得到浆料;(2)将浆料除泡之后经压力注浆成型、保压、脱模、干燥、排胶、真空烧结、退火,制备得到(Y1‑xRex)2O3:Rey透明陶瓷;其中,0≤x≤0.3,0≤y≤0.05。本发明湿法成型制备的陶瓷采用乙醇作为分散介质,克服了Y2O3的水解问题,同时,本发明采用的注浆成型设备能够将被有机物包裹的乙醇从浆料中滤出,缩短成型时间。
-
公开(公告)号:CN107546221B
公开(公告)日:2023-07-25
申请号:CN201710681452.4
申请日:2017-08-10
申请人: 中国科学院福建物质结构研究所
IPC分类号: H01L25/075 , H01L33/48 , H01L33/50 , H01L33/64
摘要: 本发明提供一种远程荧光LED器件及其制备方法,其中LED器件包括LED封装基板、块状固体荧光体、LED芯片;所述LED封装基板的发光面上设置有功能区,所述功能区内设置有一个以上LED芯片,其中,所述块状固体荧光体设置于已完成LED芯片安装的LED封装基板的功能区的上方,所述块状固体荧光体并与LED封装基板构成一个完整封闭的腔体,同时,所述LED封装基板的功能区内设置有两个以上通孔。再将高热导率的导热柱插入通孔,导热柱贯穿封装基板并靠近或接触块状固体荧光体。通过该高热导率导热柱,能够高效地将块状固体荧光体的热量传导至封装基板上,从而提升LED器件的散热能力。
-
公开(公告)号:CN109748584B
公开(公告)日:2021-11-05
申请号:CN201711093408.8
申请日:2017-11-08
申请人: 中国科学院福建物质结构研究所
IPC分类号: H01G4/12 , C04B35/50 , C04B35/622 , C04B35/638
摘要: 本发明公开了一种钆钡掺杂镍酸盐陶瓷及其制备方法和应用;所述钆钡掺杂镍酸盐陶瓷的化学式为Gd2‑xBaxNiO4,其中,0.1≤x≤0.6;所述钆钡掺杂镍酸盐陶瓷的制备方法包括如下步骤:(1)将钆源、钡源和镍源原料与氧化铝球和无水乙醇混合,进行球磨,得到粉体;(2)将步骤(1)得到的粉体过筛,进行焙烧;(3)向步骤(2)焙烧后得到的粉体中加入聚乙烯醇(PVA)水溶液,研磨造粒,过筛,压制成陶瓷胚体,排胶,得到排胶后的陶瓷胚体;(4)将步骤(3)得到的陶瓷胚体进行烧结,得到钆钡掺杂镍酸盐陶瓷。所述操作方便,合成工艺简单,制备成本低;所述钆钡掺杂镍酸盐陶瓷可用作电介质陶瓷,例如用作电容器(如储能电容器)材料使用。
-
公开(公告)号:CN109748583B
公开(公告)日:2021-07-16
申请号:CN201711091644.6
申请日:2017-11-08
申请人: 中国科学院福建物质结构研究所
IPC分类号: C04B35/50 , C04B35/622
摘要: 本发明公开了一种镧钐掺杂镍酸盐陶瓷及其制备方法和应用;所述镧钐掺杂镍酸盐陶瓷的化学式为La2‑xSmxNiO4,其中,0.1≤x≤0.6;所述镧钐掺杂镍酸盐陶瓷的制备方法包括如下步骤:(1)将镧源、钐源和镍源原料与氧化铝球和无水乙醇混合,进行球磨,得到粉体;(2)将步骤(1)得到的粉体过筛,进行焙烧;(3)向步骤(2)焙烧后得到的粉体中加入聚乙烯醇(PVA)水溶液,研磨造粒,过筛,压制成陶瓷胚体,排胶,得到排胶后的陶瓷胚体;(4)将步骤(3)得到的陶瓷胚体进行烧结,得到镧钐掺杂镍酸盐陶瓷。所述操作方便,合成工艺简单,制备成本低;所述镧钐掺杂镍酸盐陶瓷可用作电介质陶瓷,例如用作电容器(如储能电容器)材料使用。
-
公开(公告)号:CN110526712B
公开(公告)日:2021-02-19
申请号:CN201810507570.8
申请日:2018-05-24
申请人: 中国科学院福建物质结构研究所
摘要: 本发明公开了一种掺杂YAG透明陶瓷及其制备方法与用途。通过采用固相成型方法并在真空高温烧结的条件下,首次得到透过率较高的掺杂YAG透明陶瓷。制备得到的掺杂YAG透明陶瓷具有高温稳定性和光学性能。在制备过程中,采用粘结剂和球磨溶剂加入到原料的混合氧化物中,同时添加低价态的烧结助剂如CaO和/或MgO,所述烧结助剂用于稳定U4+和/或U6+,且用Ca2+或Mg2+和高价态的掺杂U4+和/或U6+来稳定要取代的Y3+位置,再将素坯采用真空烧结方式,在较低的温度下得到透明的掺杂YAG透明陶瓷。当添加CaO和/或MgO作为烧结助剂时,其能与烧结物形成固溶体时,使晶格畸变而得到活化形成填隙型固溶体或缺位型固溶体,可降低烧结温度,有助于烧结,可以达到较高的活性。
-
公开(公告)号:CN109659242B
公开(公告)日:2020-12-29
申请号:CN201710935433.X
申请日:2017-10-10
申请人: 中国科学院福建物质结构研究所
摘要: 本发明公开了一种倒装共晶LED的共晶效果检测方法,所述检测方法工艺简单,成本低,效果好,快速高效。由于倒装技术门槛较高,中小企业不具备经济实力支持这种研发工作,严重的阻碍了倒装共晶LED的推广。采用本发明的方法之后,中小企业和研究机构可以通过一次测试,确定标准倒装共晶LED,其他待测倒装共晶LED只要通过对比散热效果(即芯片和基板之间的温差)即可了解其共晶效果,大大促进了高功率倒装LED共晶技术的发展。
-
-
-
-
-
-
-
-
-