低轨多基地雷达卫星星座覆盖计算方法及系统

    公开(公告)号:CN119363190A

    公开(公告)日:2025-01-24

    申请号:CN202411334192.X

    申请日:2024-09-24

    Abstract: 本发明提供一种低轨多基地雷达卫星星座覆盖计算方法及系统,包括:步骤S1:采用J2递推模型计算所有卫星的J2000坐标系下的轨道数据;步骤S2:计算J2000坐标系下目标的位置矢量;步骤S3:对每个时刻,计算确定满足地面仰角约束的卫星集合Σ1;步骤S4:计算确定满足距离约束的卫星集合Σ2;步骤S5:计算确定满足单星视场约束的卫星集合Σ3;步骤S6:求解Σ1、Σ2、Σ3的并集Σ4,对Σ4内的卫星进行两两组合,并计算每个组合对目标的双基地角,确定该时刻目标覆盖状态标志FL;步骤S7:按照一定的时间分辨率,重复求解每个时刻目标覆盖状态标志FL,计算确定最大重访时间、平均重访时间、最小重访时间。本发明能够实现低轨多基地雷达星座对地覆盖快速计算。

    用于绕飞编队的激光星间链路终端自主接力方法及系统

    公开(公告)号:CN111924132B

    公开(公告)日:2021-10-26

    申请号:CN202010718727.9

    申请日:2020-07-23

    Abstract: 本发明提供了一种用于绕飞编队的激光星间链路终端自主接力方法及系统,包括:步骤1:主星和副星分别获取自身及对方的GNSS信息;步骤2:主副星根据GNSS信息,实时递推计算主副星在对方本体坐标系的视线矢量;步骤3:主星根据副星在主星本体坐标系的视线矢量,结合主星激光终端的星上布局,进行接力终端选择及接力窗口计算;副星根据主星在副星本体坐标系的视线矢量,进行接力终端选择及接力窗口计算;步骤4:主星和副星待接力终端分别对目标终端的信标光进行搜索、捕获和跟踪,实现对激光链路的切换和自主跟踪。本发明实现简单,可以保障编队运行过程中星间激光链路自主持续稳定运行,减小地面干预,最大程度保障链路持续性与稳定性。

    遥感卫星对地姿态机动扫描的轨迹指向角计算方法及系统

    公开(公告)号:CN112966366A

    公开(公告)日:2021-06-15

    申请号:CN202110154812.1

    申请日:2021-02-04

    Abstract: 本发明提供了一种遥感卫星对地姿态机动扫描的轨迹指向角计算方法及系统,涉及卫星对地扫描分析技术领域,该方法包括:步骤S1:在地球固连坐标系下规划2D地面扫描轨迹,并将2D地面扫描轨迹转化至地球惯性坐标系下的3D扫描轨迹;步骤S2:根据卫星轨道参数,对3D扫描轨迹的扫描弧段进行前推和后推计算,获取卫星轨道数据;步骤S3:通过卫星轨道数据和3D扫描轨迹,再根据时间点逐一计算指向矢量序列,获取轨道坐标系下的两个指向角。本发明能够执行地面扫描轨迹到指向角的转换,为姿控系统设计提供设计输入,评估地面扫描轨迹规划的合理性。

    用于卫星姿轨控通用综合测试的飞轮信号采集方法及系统

    公开(公告)号:CN112632700A

    公开(公告)日:2021-04-09

    申请号:CN202011529467.7

    申请日:2020-12-22

    Abstract: 本发明提供了一种用于卫星姿轨控通用综合测试的飞轮信号采集方法及系统,包括:飞轮角动量计算步骤根据飞轮的真实的转向信号α、转速信号Ω,计算得到飞轮基准坐标系下飞轮单机的角动量及变化率。星体系下角动量计算步骤根据飞轮单机的角动量、变化率以及在卫星的布局关系得到对应的安装矩阵M,从而得出飞轮在卫星本体坐标系oxbybzb中的角动量Hb,从而得到飞轮组合在卫星本体坐标系oxbybzb中的角动量H∑。地面动力学姿态仿真步骤根据角动量H∑得到卫星姿态与卫星受到的飞轮控制力矩之间的关系。本发明组成简单,各个步骤可根据具体需求修改参数,以适应多类型卫星任务和多型号的飞轮,具有很好的通用性,可适应卫星姿轨控分系统的综合测试。

    多星多模式机动成像模型的星载通用描述方法及系统

    公开(公告)号:CN111947646A

    公开(公告)日:2020-11-17

    申请号:CN202010807877.7

    申请日:2020-08-12

    Abstract: 本发明提供了一种多星多模式机动成像模型的星载通用描述方法及系统,包括:分类步骤:明确星簇内各类成员卫星的成像模式,将不同成像模式按照机动维度分成两类;约束提炼步骤:将两类中各成员卫星的约束抽象提炼后,由中枢星整合处理;机动时间确认步骤:在单滚动轴机动模式下,明确星簇内各类成员卫星的机动时间;多项式拟合步骤:对单滚动轴机动模式下,姿态机动角度时间进行多项式拟合;定义步骤:在两轴机动模式下,定义不同成像过程时段;规划控制步骤:经过通用成像模型的描述方法,形成注数包,实现对星簇任务的规划控制。提高多星协同工作任务的规划效率,使星簇系统中各个成员星发挥到各种最大效能。

    适用于狭小空间的力矩陀螺安装支架

    公开(公告)号:CN117302560A

    公开(公告)日:2023-12-29

    申请号:CN202311295367.6

    申请日:2023-10-08

    Abstract: 本发明提供了一种适用于狭小空间的力矩陀螺安装支架,包括支架本体和支架垫板,所述支架本体设置在支架垫板上;所述支架本体包括与支架垫板连接的竖直部和设置在竖直部远离支架垫板一侧的倾斜安装面;所述倾斜安装面和支架垫板所在面之间存在锐角夹角。通过将倾斜安装面设计为相对于水平及竖直方向均调整了一定角度,使得力矩陀螺空间上处于斜装的状态,从而减小了水平方向上所占据的空间,在安装过程中,力矩陀螺支架在倾斜安装面设计高精度靠面,保证力矩陀螺安装到位,安装精度满足要求,在支架本体的竖直部设计有精测基准面,狭窄空间内力矩陀螺棱镜遮挡时可用于精测。

    多星多模式机动成像模型的星载通用描述方法及系统

    公开(公告)号:CN111947646B

    公开(公告)日:2022-02-08

    申请号:CN202010807877.7

    申请日:2020-08-12

    Abstract: 本发明提供了一种多星多模式机动成像模型的星载通用描述方法及系统,包括:分类步骤:明确星簇内各类成员卫星的成像模式,将不同成像模式按照机动维度分成两类;约束提炼步骤:将两类中各成员卫星的约束抽象提炼后,由中枢星整合处理;机动时间确认步骤:在单滚动轴机动模式下,明确星簇内各类成员卫星的机动时间;多项式拟合步骤:对单滚动轴机动模式下,姿态机动角度时间进行多项式拟合;定义步骤:在两轴机动模式下,定义不同成像过程时段;规划控制步骤:经过通用成像模型的描述方法,形成注数包,实现对星簇任务的规划控制。提高多星协同工作任务的规划效率,使星簇系统中各个成员星发挥到各种最大效能。

    相对运动轨道构型的模拟方法

    公开(公告)号:CN107633142A

    公开(公告)日:2018-01-26

    申请号:CN201710868984.9

    申请日:2017-09-22

    Abstract: 本发明公开了一种相对运动轨道构型的模拟方法,其包括如下步骤:步骤一,设计低轨轨道的近地点高度和远地点高度,满足不同的交会速度如100m/s,200m/s,及300m/s;步骤二,设计合理的近地点幅角,使得双星椭圆轨道交会点在我国上空,满足测控弧段要求;步骤三,设计两星距离,使得第一星在相对运动椭圆半长轴的合适位置,可调整交会时刻的两星距离;步骤四,拟定试验步骤,从变轨、跟踪、指向、试验的先后顺序,分解试验内容等。本发明遵行先易后难的原则,双星运行在低轨轨道,创新性的利用近地点幅角相差半周的椭圆轨道,调节双椭圆不同的远地点高度获得不同的相对运动速度,调节双星在两轨道交会处的距离获得不同的相对运动角速度。

    一种遥感卫星对地姿态机动扫描的轨迹规划方法及系统

    公开(公告)号:CN112960145B

    公开(公告)日:2022-12-13

    申请号:CN202110156213.3

    申请日:2021-02-04

    Abstract: 本发明提供了一种遥感卫星对地姿态机动扫描的轨迹规划方法及系统,涉及卫星设计方案论证技术领域,该方法包括:步骤S1:在地球固连坐标系下规划2D地面扫描轨迹,并将2D地面扫描轨迹转化至地球惯性坐标系下的3D扫描轨迹;步骤S2:根据卫星轨道参数,对3D扫描轨迹的扫描弧段进行前推和后推计算,获取卫星轨道数据;步骤S3:通过卫星轨道数据和3D扫描轨迹,再根据时间点逐一计算指向矢量序列,获取轨道坐标系下的两个指向角;步骤S4:将两个所述指向角发送给姿轨控系统作为目标姿态完成闭环控制。本发明能够执行地面扫描轨迹到指向角的转换,为姿控系统设计提供设计输入,并完成姿态闭环控制。

    椭圆轨道伴飞构型初始化的双星协同变轨方法及系统

    公开(公告)号:CN114460952A

    公开(公告)日:2022-05-10

    申请号:CN202210050891.6

    申请日:2022-01-17

    Abstract: 本发明提供了一种椭圆轨道伴飞构型初始化的双星协同变轨方法及系统,包括:步骤S1:根据初末状态的轨道根数,分别计算主从双星的脉冲速度增量序列;步骤S2:设定主星脉冲间的间隔圈数,计算主星的第一次点火维度幅角,从而确保最后一次脉冲施加后纬度幅角满足指定值;步骤S3:设定从星脉冲间的间隔圈数,根据主星的点火纬度幅角和预设近地点幅角差值,计算从星的第一次点火纬度幅角,从而确保最后一次脉冲施加后主从双星近地点幅角差值满足指定值;步骤S4:采用J2摄动轨道动力学方程对卫星运动进行描述,建立第一次点火纬度幅角和变轨结束后双星近地点幅角差的约束方程,采用SQP算法,迭代计算控制变量。

Patent Agency Ranking