一种热力模拟试验机用高温拉伸卡具及其设计和使用方法

    公开(公告)号:CN111855391B

    公开(公告)日:2023-08-18

    申请号:CN202010644707.1

    申请日:2020-07-07

    Abstract: 本发明公开了一种热力模拟试验机用高温拉伸卡具及其设计和使用方法,卡具包括楔形卡块和柱形卡环,所述楔形卡块成组使用,共需2组分别夹持试样的两端;每组至少由2个楔形卡块组成1个台体,台体的侧面与面积较大的底面呈θ角,台体的上下底面中心开有一通孔,并提供了θ角的设计方法;所述柱形卡环呈柱状,内部有一腔体,且腔体为一台体,该台体的锥度与一组楔形卡块组成的台体锥度相同。本发明设计的卡具结构简单,装拆方便,且在高温拉伸试样的两端免去加工螺纹条件下,实现很大的加载力而不会失效,满足高温拉伸试验需求。

    一种测定材料静态再结晶体积分数的方法

    公开(公告)号:CN110702727B

    公开(公告)日:2022-02-18

    申请号:CN201910942464.7

    申请日:2019-09-30

    Abstract: 本发明公开了一种测定材料静态再结晶体积分数的方法,应用热力模拟试验机进行一组单道次压缩试验,得到应力应变曲线,进行数据拟合、微分操作,得到加工硬化率与相应的应力之间的关系曲线,从曲线中的拐点判断发生动态再结晶的临界应变εc;应用热力模拟试验机进行一组双道次压缩试验,双道次的总变形量小于单道次的变形量,且双道次压缩试验中的每一道次变形量ε0均小于单道次压缩试验确定出的动态再结晶临界应变量εc;采用多项式分别对单道次、双道次中应力应变曲线进行拟合,分别进行积分操作,得到相应的应变能;最后计算静态再结晶体积分数。本发明考虑了回复、动态再结晶对静态再结晶体积分数的影响,能够更准确测定钢铁材料奥氏体静态再结晶体积分数。

    一种防止试样在加热时变形影响试验精度的方法

    公开(公告)号:CN110793873B

    公开(公告)日:2021-12-24

    申请号:CN201910939733.4

    申请日:2019-09-30

    Abstract: 本发明涉及一种防止试样在试验前变形影响试验精度的方法,将热力模拟试验机中的从动轴与液压缸之间的连接断开,将预先焊接有热电偶的试样夹持安装在2个压头之间,开启热力模拟试验机的试验控制程序,开始对试样进行加热,当试样被加热至试验最高温度时,使主动轴与从动轴之间具有0.1~2毫米的间距,当试样进入保温阶段时,主动轴与从动轴的间距趋于零;然后根据常规试验方法进行热力模拟试验。本发明可以有效防止试样在预加载力和较高加热温度的作用下,由于强度降低导致屈服而产生的试验前变形现象,从而提高热力模拟试验的精确度。

    一种焊接连续冷却转变曲线的测量方法

    公开(公告)号:CN113702421A

    公开(公告)日:2021-11-26

    申请号:CN202110955586.7

    申请日:2021-08-19

    Abstract: 本发明涉及一种焊接连续冷却转变曲线的测量方法,包括:1)采用膨胀法测得材料的临界点;2)选定焊接热循环模型,绘制一系列冷却曲线图;3)进行焊接热循环工艺模拟,采集试验材料的温度和膨胀量,并根据采集的数据绘制膨胀量与时间关系曲线;4)得到假定材料在冷却过程中未发生相变时,随着温度的降低体积逐渐减小的变化曲线;5)将步骤3)与步骤4)中的2条曲线进行对比,偏折点即为相变点;6)将相变点标定在步骤2)的冷却速度曲线图中,将相同相变类型的相变起始点和结束点连接成线,即得到焊接连续冷却转变曲线。本发明能够准确地得到不同焊接工艺参数下的相变情况,测定出焊接连续冷却转变曲线,从而优化焊接工艺过程。

    一种具有优良韧性的高耐磨钢球及其制造方法

    公开(公告)号:CN109695003B

    公开(公告)日:2020-09-29

    申请号:CN201710984978.X

    申请日:2017-10-20

    Abstract: 本发明提供了一种具有优良韧性的高耐磨钢球及其制造方法,钢球的化学成分重量百分比为:C:0.55%~0.63%,Si:1.61%~1.85%,Mn:0.65%~1.20%,Cr:0.65%~0.95%,B:0.0021%~0.0029%,P≤0.030%,S≤0.030%,余量为Fe及不可避免的杂质。本发明采用的制造方法包括:转炉冶炼,方坯连铸,连铸坯加热温度1150~1250℃,保温时间30~120min,开轧温度1000~1100℃,终轧温度810‑940℃,得轧球用圆钢;圆钢缓冷后进行再加热轧制,采用感应加热时圆钢的加热温度为1120~1180℃,室式炉加热时加热温度为1150~1200℃,保温时间30‑90min;钢球的淬火温度为840‑890℃,淬火时间20‑90s;淬火后回火温度150‑200℃,保温时间30~100min。本发明的制造的钢球,贵重金属元素的加入量少,生产工艺简单,其生产成本低、生产效率高,钢球的耐磨性能好、韧性高。

    一种模拟焊接实验方法
    76.
    发明授权

    公开(公告)号:CN106290447B

    公开(公告)日:2018-10-09

    申请号:CN201510363572.0

    申请日:2015-06-26

    Abstract: 本发明提供一种模拟焊接实验方法,根据边长为D的热力模拟试验机夹具方形孔尺寸,选取厚度为d的垫片;从宽度为D、长度为L、厚度分别为[(D‑d)/2]、[(D‑2d)/3]、[(D‑3d)/4]三种规格试样中分别选取2、3、4个作为模拟试样,将其中一个模拟试样接上热电偶,再将模拟试样叠放并垫上垫片后形成的整体模拟试样安装于热力模拟试验机上,进行焊接热循环实验。实验后的模拟试样分别用于金相检验和夏比摆锤冲击试验。本发明通过一次焊接模拟实验可获得2~4个模拟试样,既可减少实验次数,缩短实验周期,节约实验成本;又能保证各个试样实验状态的一致性,提高实验可靠性。同时,通过调整试样尺寸,可实现厚度尺寸较小试样的焊接热循环模拟实验。

    一种获取高温拉伸试样断口的方法

    公开(公告)号:CN108398336A

    公开(公告)日:2018-08-14

    申请号:CN201710064819.8

    申请日:2017-02-05

    Abstract: 本发明提供一种获取高温拉伸试样断口的方法,将热电偶焊接在待测试样的中间,在真空状态下将试样加热到1330~1370℃,保温4~5min后,以2.8~3.2℃/S的速率降温至1190~1210℃,保温55~65s后,以2×10-3/S速率将试样拉伸;并将试验过程分为变形初期、变形中期和变形后期三个阶段分别控制,变形中期当试样变形力经过最高点之后下降到某一个力值F时,将设定的试验拉伸温度置为零,力值F=规定基准力F0+加摩擦力f+试样所处环境的内外压力差Fp,当F=f+Fp时,将设定的试验拉伸温度置为零,规定基准力F0设定在20~50千克力。本发明操作方便快捷,可有效避免试样由于断裂所致断口熔融现象的发生,有利于进行微观组织及断口形貌的研究。

    一种热模拟试样喷碳膜位置选取方法

    公开(公告)号:CN106885719A

    公开(公告)日:2017-06-23

    申请号:CN201510944451.5

    申请日:2015-12-16

    CPC classification number: G01N1/28 G01N1/32

    Abstract: 一种热模拟试样喷碳膜位置选取方法,本发明所提供的热模拟试样喷碳膜位置选取方法针对热模拟试样在热加工过程中变形不均匀的特点,在一个热模拟试样上同时获得了具有名义应变的碳膜区域和具有其它应变量的碳膜区域,并避免了用刻刀直接刻画碳膜,降低了操作难度。另外,不同应变量的碳膜具有不同形状,相同形状的碳膜用于材料析出相的观察、比较分析,提高了分析材料在热加工过程中析出行为的可靠性;而不同形状的碳膜则用于研究应变量对材料析出行为的影响,提高了检验效率,降低了实验成本。

    一种模拟缓慢冷却过程的试验方法

    公开(公告)号:CN102998328B

    公开(公告)日:2016-01-20

    申请号:CN201210411227.6

    申请日:2012-10-23

    Abstract: 本发明公开一种模拟缓慢冷却过程的试验方法,它通过以下步骤进行:将n个试样加工成统一长度的圆棒状,在其中一个试样上焊接热电偶;根据所需的冷却速度范围,应用钽片将焊接好热电偶的试样与其它试样包裹在一起,试样的轴线平行且两端对齐;将试样置于试验机的两压头之间,启动液压系统,将其夹紧;抽真空,当真空度达到5~20帕斯卡时,启动加热系统对试样进行加热和保温,之后将温度直接设定为零,使试样随着压头自然冷却,在此过程中程序仍然运行并采集试样的实际温度;冷却过程中的程序运行时间为:t=(3/n)×(T-T1)/v,本发明无需对原有设备添加配件,可以再现试样自然冷却相变过程,实现了缓慢的自然冷却工艺过程模拟实验。

    一种薄板金属薄膜试样的制备方法

    公开(公告)号:CN103033403B

    公开(公告)日:2015-09-02

    申请号:CN201110303133.2

    申请日:2011-09-29

    Abstract: 本发明公开一种薄板金属薄膜试样的制备方法,具体步骤如下:机械预减薄:手持薄板试样一端,用打磨金相试样的砂轮机将试样的另一端打磨到0.5mm±0.1mm;化学预减薄:腐蚀溶液Hcl∶HNO3∶H2O的体积比为3∶1∶(0~12),把试样经过砂轮打磨的一端放入腐蚀液中腐蚀,将试样最终减薄到0.3mm±0.1mm;砂纸减薄:将砂纸置于玻璃板上,用剪刀在化学减薄后的试样上剪一块试样,手握研磨块按压住试样,带动试样在砂纸上来回研磨;将试样用切样器切成圆片,用双喷电解仪或离子减薄仪将试样穿孔减薄。本发明解决了薄板试样制样难、制样效率低、试样表面有干扰层无法反应金属组织真实情况等问题。

Patent Agency Ranking