非线性压杆弹簧装置
    61.
    发明授权

    公开(公告)号:CN100410561C

    公开(公告)日:2008-08-13

    申请号:CN200610150921.1

    申请日:2006-10-19

    Abstract: 一种非线性压杆弹簧装置,涉及一种弹簧装置。本发明解决了目前的弹簧装置不适用于低频环境,尤其是2Hz以下的情况,它包括弹簧外套、上端盖、压杆、导向滑块和导向槽,弹簧外套是带底的圆筒状的非线性压杆弹簧装置的外壳;上端盖是与弹簧外套底面平行、间隙配合嵌入到弹簧外套内,其上部中央带有突起的圆盘;压杆沿上端盖圆周均匀分布、垂直于弹簧外套的底面、两端分别固定安装在弹簧外套的底部和上端盖的下表面上;导向槽是在弹簧外套的内侧壁的上部均匀分布垂直开的若干个凹槽;导向滑块分别与所述若干个导向槽的位置对应固定安装在上端盖的侧壁上、并且分别嵌入安装在所述的导向槽中。本发明可以广泛的应用在低频或超低频隔振环境中需要弹性支承的地方。

    一种复杂微小构件超精密控形加工系统运动单元定位精度多源数据补偿方法

    公开(公告)号:CN120044876A

    公开(公告)日:2025-05-27

    申请号:CN202510212672.7

    申请日:2025-02-25

    Abstract: 一种复杂微小构件超精密控形加工系统运动单元定位精度多源数据补偿方法,涉及复杂微小构件超精密控形加工技术领域,本发明为了满足狭小空间约束下薄壁球壳微构件表面特征结构高精度创成而提出的。技术要点:由数控系统程序控制直线运动单元以恒定增量形式分别于全行程及工作区间内往复运动若干次,通过高频激光干涉仪采集运动过程中直线运动单元位置,经数据处理获取全局及区域内的多源误差数据。基于多源数据补偿方法,建立多源数据误差补偿表,并通过数控程序进行补偿,完成直线运动单元定位精度标定。对于回转运动单元,采用自准直仪进行误差的标定,进一步由误差合成法通过误差表在程序中进行补偿,从而完成复杂微小构件超精密控形加工系统各运动单元定位精度的标定与补偿,为微结构高精度创成提供高定位精度的设备支撑。

    一种基于ABAQUS的各向异性KDP功能晶体材料微铣削加工过程的三维仿真方法

    公开(公告)号:CN115169198B

    公开(公告)日:2025-04-29

    申请号:CN202210905554.0

    申请日:2022-07-29

    Abstract: 本发明提供了一种基于ABAQUS的各向异性KDP功能晶体材料微铣削加工过程的三维仿真方法,属于光学元件计算机辅助设计与加工技术领域。为解决现有的仿真方法无法从三个维度精确预测各向异性KDP材料微铣削加工过程的问题。包括:步骤一、构建加工过程的三维装配模型;步骤二、设置分析步时间总长和半自动质量缩放以及设置输出变量;步骤三、构建工件的各向异性本构模型;步骤四、对铣刀和KDP晶体元件分别进行网格划分;步骤五、模拟铣刀与元件的接触状态;步骤六、约束模型自由度并设置加工工艺参数;步骤七、对模型进行求解,重复步骤二至七的操作,至仿真结果收敛;步骤八、输出仿真结果。本发明方法能够全方位精确描述向异性KDP晶体材料微铣削加工过程。

    一种用于KDP晶体DPN水溶修复形貌演变模拟的表面微纳缺陷三维形貌演变模拟方法

    公开(公告)号:CN118447201A

    公开(公告)日:2024-08-06

    申请号:CN202410534147.2

    申请日:2024-04-30

    Abstract: 本发明一种用于KDP晶体DPN水溶修复形貌演变模拟的表面微纳缺陷三维形貌演变模拟方法,涉及微纳制造领域,为解决现有方法无法将KDP元件表面微纳缺陷三维形貌转化为DPN水溶修复形貌演变模拟模型初始值进行微纳缺陷三维形貌演变模拟的问题。包括:步骤一、采集KDP光学元件表面微纳缺陷三维云图;步骤二、对三维云图进行预处理,转换导出为一维数组;步骤三、对一维数组进行零点偏移和归一化缩放;步骤四、对一维数组进行二维像素矩阵映射变换;步骤五、重写为灰度图像后导入模拟模型,对每个二维像素点进行坐标映射;步骤六、进行反演变换实现三维云图的重建;步骤七、进行初始化并求解,得到以缺陷实际形貌为初始值的DPN水溶修复形貌演变过程。

    一种针对悬臂梁状弱刚度微车刀外圆车槽的车削工艺参数优化方法

    公开(公告)号:CN114675611B

    公开(公告)日:2024-07-19

    申请号:CN202210366496.9

    申请日:2022-04-08

    Abstract: 一种针对悬臂梁状弱刚度微车刀外圆车槽的车削工艺参数优化方法,涉及超精密弱刚度微槽车削领域,为解决现有技术中没有针对悬臂梁状弱刚度微车刀挠度变形引起的加工误差进行优化的问题。具体过程为:步骤一、分析出影响刀具挠度变形的切削力分量,建立该切削力分量的函数模型;步骤二、根据切削力分量函数模型建立挠度变形的函数模型;步骤三、根据挠度变形函数模型建立实际进给距离的函数模型;步骤四、根据实际进给距离函数模型代入挠度变形的函数模型中进行循环计算,求得最终实际进给距离的函数模型;步骤五、根据最终实际进给距离的函数模型,建立槽深误差的函数模型,通过分析各参数对槽深误差的影响规律对各参数进行优选。

    一种熔石英元件表面损伤发起与损伤增长自动评价装置与方法

    公开(公告)号:CN115326804B

    公开(公告)日:2024-05-14

    申请号:CN202211068372.9

    申请日:2022-09-02

    Abstract: 本发明提供了一种熔石英元件表面损伤发起与损伤增长自动评价装置和方法,涉及光学元件技术领域,为解决现有技术在激光损伤阈值以及损伤增长测试过程中,需要频繁地装夹和拆卸熔石英元件对损伤进行检测,不但检测效率低,且重复安装元件的将导致误差的问题。该装置包括:X轴运动模组、Y轴运动模组、光学元件夹具组、相机及光源组和基座;X轴运动模组安装在基座上,Y轴运动模组垂直安装于X轴运动模组上,光学元件夹具组安装于Y轴运动模组上,相机及光源组的相机和背光源安装于X轴运动模组的相对两侧,相机、环形光源与背光源位于同一轴线上。本发明可实现熔石英元件表面损伤发起与损伤增长评价全流程自动化,具有较高的准确度。

Patent Agency Ranking