一种基于异质数据的人物相似度刻画方法

    公开(公告)号:CN107577782B

    公开(公告)日:2021-04-30

    申请号:CN201710827978.9

    申请日:2017-09-14

    Abstract: 本发明公开了一种基于异质数据的人物相似度刻画方法,属于数据挖掘领域。本发明首先搜集用户的微博文本,获取用户之间的关注关系以及各用户的基本信息,针对不同类型数据的特点个性化选择处理方式,并对于微博文本采用Doc2vec模型,结合上下文信息将文本表示成向量,再根据定义的相似度函数衡量相似度,最后将不同维度得到的矩阵进行融合,刻画用户最终的相似度。本发明引入了多种社交网络信息,包括社交关系数据、用户属性数据和用户文本数据等,通过对不同类型的信息加以综合考虑,以得到更全面的人物相似度刻画方法;同时本发明提供了对于多种数据的处理和计算方案,利用完整的数据和加权融合方法,个性化计算不同偏好的人物相似度。

    信源重要度的评级方法及评级系统

    公开(公告)号:CN106168969B

    公开(公告)日:2019-05-14

    申请号:CN201610524367.2

    申请日:2016-07-05

    Abstract: 本发明提供一种信源重要度的评级方法及评级系统,评级方法包括:步骤1,计算信源所属网站的网站重要度值W1;步骤2,计算信源在所属行业的行业重要度值W2;步骤3,预设定网站重要度权重值C1和行业重要度权重值C2;根据下式计算得到信源重要度值M:信源重要度值M=网站重要度值W1*网站重要度权重值C1+行业重要度值W2*行业重要度权重值C2;步骤4,根据信源重要度值M对信源进行重要度评级,并输出信源重要度评级结果。优点为:本发明能够对信源进行客观、科学合理、有效实用的信源重要度评级。

    基于微信群信息的数据分析系统

    公开(公告)号:CN108880980A

    公开(公告)日:2018-11-23

    申请号:CN201810403059.3

    申请日:2018-04-28

    Abstract: 本发明公开一种基于微信群信息的数据分析系统,包括:信息采集模块,其每隔预设时间按发送顺序采集一批预设数量的微信群消息的html标签;数据分析模块,其将信息采集模块采集到的html标签通过正则解析得出其中包含的每条群消息的属性,所述群消息属性包括群编号、群消息编号;缓存去重模块,其将每条群消息属性包含的群编号和群消息编号进行哈希运算得到哈希值,再将相邻两批次中的每条群消息的哈希值对比,若有重复部分,则将后一批次中哈希值重复的群消息删除;多媒体提取模块;对象存储模块;关键词提取模块;群消息库模块。本发明具有能将采集到的微信群消息数据进行分析和统计,最后直观的展示出来,可以有效、直观的监测微信群的优点。

    用于时序预测的参数优化系统

    公开(公告)号:CN108805254A

    公开(公告)日:2018-11-13

    申请号:CN201810393788.5

    申请日:2018-04-27

    CPC classification number: G06N3/006

    Abstract: 本发明属于时序预测技术领域,具体提供了一种时序预测的参数优选系统,旨在解决现有技术对先验知识要求高、可拓展途径较低、时间复杂度高、实际可行度低以及鲁棒性差的技术问题。为此目的,本发明提供的参数优化系统包括参数优化模块,参数优化模块配置为基于预先构建的参数优化模型对预先获取的时序预测模型进行参数优化。其中,参数优化模块包括空间调控单元以及收敛调控单元;空间调控单元配置为基于第一权重函数调控参数优化模块的空间搜索范围;收敛调控单元配置为基于第二权重函数调控参数优化模块的收敛速率。本发明的系统增加了分布式表现,各个个体可以高效交流、协作,且提高了算法的性能。

    一种计算微博用户影响力的方法

    公开(公告)号:CN105205146B

    公开(公告)日:2018-10-30

    申请号:CN201510600289.5

    申请日:2015-09-18

    Abstract: 本发明公开了一种计算微博用户影响力的方法,属于数据挖掘领域,具体步骤如下:一、收集每日的微博流数据;步骤二、服务器将微博流数据平均分发到多个端口;步骤三、对流数据进行特征提取和并行计算;步骤四、将特征存储;步骤五、过滤不关心用户;步骤六、计算用户影响力;步骤七、存储每日每个用户的影响力。优点在于:该影响力的指标增加了平均数、最高数和爆发度,平均数要求用户发布的每条微博的平均影响力都比较高,避免出现微博数大造成转发量或评论量大,最高数和爆发度分别刻画影响力传播的范围和速度,因此,新增加的指标克服以往指标中存在单一总数不能完整刻画用户影响力的缺陷,能够更深入的解释用户影响力高的原因。

    短文本相似度计算方法及系统

    公开(公告)号:CN108334495A

    公开(公告)日:2018-07-27

    申请号:CN201810090296.9

    申请日:2018-01-30

    Abstract: 本发明提供了一种短文本相似度计算方法,包括以下步骤:S1、对训练语料进行分词,利用word2vec算法得到每个词的词向量,并组合形成词向量集合;S2、分别对待计算短文本进行分词,在词向量集合中找到待计算短文本的每个词语的词向量,并组合形成短文本向量集合;S3、计算词向量集合中每个词向量与短文本向量集合中每个词向量的余弦相似度,并得到每个词向量的最大相似度值组合得到短文本句子向量;S4、计算两个短文本句子向量间的相似度,即可计算两个短文本间的相似度。本发明还提供了一种短文本相似度计算系统。本发明的相似度算法通过将短文本句子以句子向量表示,有效的刻画了短文本句子之间的语义相似度,准确率高。

Patent Agency Ranking