-
公开(公告)号:CN114581484A
公开(公告)日:2022-06-03
申请号:CN202210118867.1
申请日:2022-02-08
Applicant: 北京空间飞行器总体设计部
Abstract: 一种基于单目序列图像的空间目标形状与运动自主估计方法,包括如下步骤:建立双目视觉测量的基本方程、空间目标点的三维重建方程、基于序列图像的目标运动状态测量方程;设定相机系到前一帧主轴系的转换矩阵等于单位阵,匹配相邻帧图像,得到目标惯性主轴坐标系在相邻帧成像时刻之间的变换矩阵;利用空间目标点的三维重建方程,获得目标特征点在左相机坐标系的位置向量集合和目标特征点在右相机坐标系的位置向量集合;然后统一前后相邻帧的尺度;重新确定目标特征点在左相机坐标系和右相机坐标系的位置向量集合;计算得到相邻帧之间的姿态四元数、自旋角速度和自旋轴方向;通过对目标选择一周的序列图像匹配与计算,即可获得目标的形状估计。
-
公开(公告)号:CN114577222A
公开(公告)日:2022-06-03
申请号:CN202210126162.4
申请日:2022-02-10
Applicant: 北京空间飞行器总体设计部
Abstract: 一种基于自主导航系统误差有限扩维的状态空间重构方法,首先根据成像原理对光学相机的安装误差与像面平移进行建模,在利用光学相机安装误差与像面平移模型,通过正交投影方法对光学相机系统误差进行降维表征并分析系统误差可估计条件,根据光学相机系统误差统一降维表征模型进行状态空间重构,并分析系统可观测性,最后根据可观测性分析结果给出满足系统可观测性的观测策略并给出滤波方法。
-
公开(公告)号:CN107203663B
公开(公告)日:2021-02-09
申请号:CN201710347072.7
申请日:2017-05-16
Applicant: 北京空间飞行器总体设计部
Abstract: 一种姿轨控机动作用下柔性部件指向获取方法,首先对反射面天线进行结构有限元建模,进而建立卫星刚柔耦合动力学模型,获取反射面天线振动模态向量;然后建立卫星姿态控制作用模型,进而与卫星刚柔耦合动力学模型组成控制闭环作用下卫星动力学模型;最后,建立天线辐射场强在天线振动模态空间下的表达式,建立整星系统在轨状态动力学‑姿控‑天线辐射综合模型;根据卫星在轨工作激励数据仿真得到卫星天线振动的时变模态坐标,代入天线辐射场模态空间表达式,即可获取在轨工作模式对天线辐射场强影响的动态变化情况。
-
公开(公告)号:CN112326165A
公开(公告)日:2021-02-05
申请号:CN202011061740.8
申请日:2020-09-30
Applicant: 北京空间飞行器总体设计部
Abstract: 本发明一种基于界面力谱的卫星及部组件振动试验力限条件获取方法,(1)根据星间耦合分析或飞行遥测数据,确定卫星或部组件的界面力谱;(2)确定卫星及部组件的基频;(3)根据步骤(1)确定的卫星或部组件的界面力谱,以及步骤(2)确定的卫星及部组件的基频f0,确定卫星或部组件界面力谱的最大值;(4)根据步骤(3)确定的卫星或部组件界面力谱的最大值,确定卫星或部组件振动试验力限条件,可用于卫星及部组件地面振动试验力限条件制定。
-
公开(公告)号:CN108489496B
公开(公告)日:2021-02-05
申请号:CN201810401074.4
申请日:2018-04-28
Applicant: 北京空间飞行器总体设计部
IPC: G01C21/20
Abstract: 一种基于多源信息融合的非合作目标相对导航运动估计方法及系统,首先给出激光与视觉测量系统的联合标定方法,进而基于联合标定后的测量系统获取激光扫描点云在相机坐标系的重投影信心,采用两次插值方法分别获取目标点的深度补偿信息和补偿后的深度信息,实现激光扫描点云与视觉相机图像的信息融合,最后在融合信息基础上获取目标的运动估计。本专利给出了视觉相机与激光扫描的信息融合方法,能够通过激光扫描点云的高精度深度信息弥补视觉图像在深度方向精度差的不足,同时又避免了激光扫描分辨率低的缺点,兼具了激光扫描深度信息精度高与视觉测量系统的图像分辨率高的优点;同时,信息融合的插值计算方法为简单的代数运算,易于工程实现与应用。
-
公开(公告)号:CN111881598A
公开(公告)日:2020-11-03
申请号:CN202010580435.3
申请日:2020-06-23
Applicant: 北京空间飞行器总体设计部
IPC: G06F30/23 , G06F111/04 , G06F119/14
Abstract: 本发明一种基于加速度谱的卫星及部组件界面力谱获取方法,(1)基于星箭耦合分析,获得卫星或部组件加速度的时域响应值;根据卫星或部组件加速度的时域响应值,通过冲击响应谱变换,得到卫星或部组件的加速度谱的幅值;(2)在星箭耦合模型上加载单位频域载荷进行频域响应分析,确定卫星或部组件界面的加速度的相位;(3)根据步骤(1)得到的卫星或部组件的加速度谱的幅值和步骤(2)得到的卫星或部组件界面的加速度的相位,获得带相位的界面加速度谱;根据带相位的界面加速度谱,获得带相位的界面加速度谱与界面力谱的对应关系;(4)根据步骤(3)带相位的界面加速度谱与界面力谱的对应关系,确定带相位的界面力谱,从而获得界面力谱的幅值,本发明提高了力谱确定的精度。
-
公开(公告)号:CN108645416B
公开(公告)日:2020-09-18
申请号:CN201810289201.6
申请日:2018-03-30
Applicant: 北京空间飞行器总体设计部
IPC: G01C21/24
Abstract: 用于非合作目标相对导航仿真验证的视觉测量系统及方法,包括包括物理模拟模块、仿真模拟模块、视觉相对导航模块;物理模拟模块、视觉相对导航模块组成半物理半仿真验证子系统,视觉相对导航模块与仿真模拟模块组成了全仿真验证子系统;物理模拟模块、仿真模拟模块构造非合作目标,而视觉相对导航模块实现双目相机对非合作目标的感知、特征识别、特征提取、特征匹配、状态测量、参数辨识。
-
公开(公告)号:CN109801338B
公开(公告)日:2020-08-14
申请号:CN201811599870.X
申请日:2018-12-26
Applicant: 北京空间飞行器总体设计部
Abstract: 一种高鲁棒性空间相对导航目标相对坐标解算方法及系统,包括:(1)建立含有真实标定参数的双目视觉相机模型;(2)根据含有真实标定参数的双目视觉相机模型,获得空间相对导航目标在图像中像素位置应该满足的第一组约束条件;(3)在含真实标定参数相机模型的基础上,由空间相对导航目标在相机图像中的像素点位置求解目标的物理空间相对坐标,得到求解模型;(4)根据建立的目标的物理空间相对坐标求解模型基础上,确定预期观测距离范围内目标相对坐标求解应满足的第二组约束条件;(5)对两组约束条件进行简化,得到空间相对导航目标空间位置求解的约束准则;(6)在约束准则下,利用目标空间位置求解数学模型,实现空间相对导航目标的相对坐标的求解。
-
公开(公告)号:CN107092779B
公开(公告)日:2019-11-29
申请号:CN201710203826.1
申请日:2017-03-30
Applicant: 北京空间飞行器总体设计部
IPC: G06F17/11
Abstract: 本发明公开了一种基于最小交叉位移熵的传感器作动器位置优化方法,该方法包括以下步骤:步骤一:建立受控结构坐标系,根据受控结构的振型方程和正则坐标得到受控结构在任意位置的振动位移响应函数;步骤二:根据t1时刻的作动器位移响应函数与传感器位移响应函数得到作动器与传感器的交叉位移熵;步骤三:根据作动器与传感器的交叉位移熵和最小交叉位移熵优化准则得到传感器作动器位置的优化目标函数;步骤四:对优化目标函数寻优得到交叉位移熵之和的最小值,交叉位移熵之和的最小值对应的位置为作动器在受控结构中的最优位置,得出传感器的最优位置。本发明能够有效地完成传感器/作动器的优化配置,并具有同时优化传感器和作动器位置的优点。
-
公开(公告)号:CN110047110A
公开(公告)日:2019-07-23
申请号:CN201910180967.5
申请日:2019-03-11
Applicant: 北京空间飞行器总体设计部
Abstract: 一种基于序列图像的柔性星载天线在轨振动测量方法,在柔性星载天线上粘贴目标标志点,按照时序进行图像采集,得到柔性星载天线的序列图像;从柔性星载天线的序列图像中提取目标标志点,得到各个目标标志点的轮廓;将各个目标标志点的轮廓,分别拟合成亚像素精度椭圆,确定各个亚像素精度椭圆的中心像素坐标;建立相机投影模型;根据各个亚像素精度椭圆的中心像素坐标,标定相机投影模型的外参,完成在轨标定;根据标定外参后的相机投影模型,对柔性星载天线粘贴的目标标志点进行在轨振动测量。测量结果为天线面型精调、振动抑制、动力学模型在轨修正、载荷对地成像补偿提供输入,同时为卫星在轨故障诊断,在轨健康监测提供测量和图像信息。
-
-
-
-
-
-
-
-
-