-
公开(公告)号:CN100396816C
公开(公告)日:2008-06-25
申请号:CN200410053351.5
申请日:2004-07-30
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种氢化物气相外延(HVPE)氮化镓膜中的低温插入层及制备方法,其特征在于在GaN膜的HVPE制备过程中采用了低温AlN插入层的结构。在HVPE制备GaN膜的过程中,先在GaN模板上低温沉积一层AlN薄层,然后经高温退火后继续HVPE生长GaN层。低温AlN插入层的引入,释放了低温AlN层上继续生长的GaN膜中的应力,从而提高了GaN层的质量。这种方法简单易行,且对于低温AlN层的结晶质量要求不高,适合于科学实验和批量生产时采用,AlN层可以采用化学气相沉积、分子束外延或溅射等方法制备的。
-
公开(公告)号:CN100373553C
公开(公告)日:2008-03-05
申请号:CN200610024615.3
申请日:2006-03-10
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/30 , H01L21/322
Abstract: 本发明涉及一种氮化镓(GaN)基材料在干法刻蚀中而受损伤的修复方法,其特征在于在是将刻蚀受损的GaN基材料在高真空设备中热退火的同时通入等离子态氮处理,退火温度为用MBE(分子束外延)法生长氮化物外延层的典型生长温度(650~800℃)。真空度为用MBE法生长氮化物外延层的典型真空度(生长室背景压力约为10-9torr,通入氮等离子体时压力为8*10-5torr。)。该方法不仅改善了晶体内部结晶质量,而且有利于去除沉积在材料表面的刻蚀产物,使表面的氮空位得到了补充,相当于在去除受损表面时重新生长了一个薄层的氮化物外延层,从而使受损GaN基材料的电学和光学特性得到回升。
-
公开(公告)号:CN100373182C
公开(公告)日:2008-03-05
申请号:CN200510029022.1
申请日:2005-08-24
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及用于制备中红外量子级联激光器光栅的全息光栅刻蚀方法。包括基于用全息技术制备一级光栅,通过精确控制两束相干光束的夹角得到高精度的光栅周期,建立和优化适用于中红外量子级联激光器的全息光栅曝光系统、光栅刻蚀清洗工艺、适合光栅曝光的特殊光刻胶稀释液和显影液,显影过程光栅衍射效果和形貌的在线实时监控方法。具体工艺流程包括(1)光栅衬底的清洗;(2)涂布光刻胶;(3)光刻胶的前烘培;(4)在干涉系统中曝光;(5)显影;(6)光刻胶的坚膜;(7)光栅衬底的腐蚀;(8)除光刻胶。运用本发明已成功地制备出高质量7.6微米中红外单模可调谐InP基分布反馈量子级联激光器。本发明方法也适用于其它中远红外半导体激光器光栅制备。
-
公开(公告)号:CN1995973A
公开(公告)日:2007-07-11
申请号:CN200610117007.7
申请日:2006-10-11
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种基于半导体激光器跳模特性的气体测量方法和使用的传感器,其特征在于利用目标气体对激光器产生的特定波长激光的吸收特性进行气体浓度测量,也利用目标气体对同一激光器产生的相近特定波长激光的透过特性作为参比信号以抵消其他损耗和波动的影响。所使用的气体传感器的核心是一只具有稳定单模输出和跳模特性半导体激光器和一只光电探测器,适合于不同的气体光路,电路部分构成较简单,易于一体化、小型化和集成化。本发明所述的测量方法及使用的传感器是一种普适的采用半导体激光的气体传感器,具有很好的通用性。
-
公开(公告)号:CN1945284A
公开(公告)日:2007-04-11
申请号:CN200610117006.2
申请日:2006-10-11
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种单片双芯或多芯半导体激光气体传感器,其特征在于它由封装于同一管壳热沉上的制作于同一单片衬底上的激光器芯组成的单片双芯或多芯激光器、用于热沉温度控制的热电控温电路、时分驱动电路、用于吸收和参比光信号探测的光电探测器、放大及时分解调电路、以及比较电路和显示输出电路组成。本发明利用目标气体对吸收激光器产生的特定波长激光的吸收特性进行气体浓度测量,也利用目标气体对参比激光器产生的相近特定波长激光的透过特性作为参比信号以抵消其他损耗和波动的影响。此传感器的核心是单片双芯或多芯半导体激光器和一只光电探测器,易于一体化、小型化和集成化;是一种普适的采用半导体激光的气体传感器,通用性强。
-
公开(公告)号:CN1734912A
公开(公告)日:2006-02-15
申请号:CN200510027803.7
申请日:2005-07-15
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种用于短脉冲大电流激光器驱动的一体化电源,由脉冲发生器、脉冲电平转换器、脉冲驱动输出单元、低频直流控制单元以及电流监测输出端和触发电压输出端、激光器波长调谐的低频直流偏置输入端和偏置监控输出端构成。脉冲重复频率10-100KHz,脉冲宽度范围100ns-1μs,且分别独立可调。驱动脉冲电压幅度可在一伏至数十伏范围内设定,电流达数安培乃至数十安培,驱动脉冲电流的占空比调节范围可超过二个数量级,具有高的稳定度,不仅可通过低频或直流偏置对半导体激光器的激射波长进行调谐,而且可用示波器实时测量激光器驱动电流脉冲的波型和幅度,由触发脉冲进行同步。是一种普适的半导体激光器脉冲电源,通用性强。
-
公开(公告)号:CN1731637A
公开(公告)日:2006-02-08
申请号:CN200510029274.4
申请日:2005-08-31
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及用气态源分子束外延技术生长含砷含磷量子级联激光器结构原子层尺度外延材料质量控制方法。包括:(1)外延层原子层界面砷/磷原子混凝控制方法;(2)外延层的组份均匀性的控制;(3)外延层厚度的控制以及(4)外延层施主掺杂的控制方法。上述四方面质量控制已成功地用气态源分子束外延一步生长方法制备出一系列25级至100级含400-2200层的中红外波段InP基含砷含磷InP/InAlAs/InGaAs量子级联激光器结构材料。所制备的400-2200层的QCL结构都能做出优质器件,表明本发明的QCL原子层尺度外延材料质量控制方法是成功的。其思路也适合于其它III-V族化合物半导体材料与器件。
-
公开(公告)号:CN1731636A
公开(公告)日:2006-02-08
申请号:CN200510028755.3
申请日:2005-08-12
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种新型InP基量子级联激光器异质结构多功能缓冲层及制作方法。其特征在于(a)所述的一种结构是在1018cm-3高施主掺杂InP衬底上外延生长1-5×1017cm-3电子浓度的InP缓冲层;(b)所述的另一种结构是在具较高位错密度的1-5×1017cm-3低掺施主浓度的InP衬底上外延生长0.8-3×1017cm-3电子浓度的InP缓冲层。该缓冲层可作为降低中红外折射率色散的下波导包裹终止层、有源区电流扩散终止层、腐蚀终止层、改善衬底与外延层界面质量的吸杂层。具有改善、提高InP基异质结构材料与器件性能的多功能、多用途特点。
-
公开(公告)号:CN1544687A
公开(公告)日:2004-11-10
申请号:CN200310108793.0
申请日:2003-11-21
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C23C16/455
Abstract: 本发明涉及一种用于气相沉积的水平式反应器的结构,其特征在于采用了源气垂直喷淋供给的方式。该反应器结构由两组喷淋头、一路载气、一个样品托和一个圆形或者方形的水平腔体构成,整个反应器结构放在水平腔体内,源气和载气进气口和出气口分别在水平腔体的两端,使用时反应器水平放置。由于采用垂直喷淋供气方式,使得两种反应气体在混合区很小的情况下也可以实现均匀混合,既保证了外延生长中大面积均匀性的实现,同时也减少了对外延生长有害的预反应的发生。采用喷淋头与样品平行的结构,既可以采用集成化的反应器结构,即源气喷淋头和样品托固定在一起,也可以分别控制各气路的位置,使得反应器容易加工,使用灵活,适合于批量生产。
-
公开(公告)号:CN1396642A
公开(公告)日:2003-02-12
申请号:CN02112412.4
申请日:2002-07-05
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/66
Abstract: 本发明涉及一种异质外延生长的氮化镓晶体的位错密度的测定方法,特征在于用光辅助湿法刻蚀结合原子力显微镜对刻蚀的表面位错腐蚀坑密度统计,测出GaN外延层的位错密度;其具体测定步骤是:(1)先按照异丙醇、丙酮、乙醇的顺序对GaN样品进行化学清洗清洗后用大量去离子水洗净,用高纯N2吹干;(2)将样品用石蜡或夹子固定在载玻片上,放入盛有1-10M KOH溶液中,采用磁子搅拌,在Cd-He激光器提供的激光照射下,进行湿法刻蚀,时间为5-10分钟;(3)取出刻蚀样片,用去离子水清洗,高纯N2吹干,然后用原子力显微镜,进行刻蚀表面的位错腐蚀坑统计,估算出GaN外延层的位错密度。本发明提供的位错密度测定方法可靠、有效,与其它方法,如XRD位错密度估算方法相比,一致性好。
-
-
-
-
-
-
-
-
-