-
公开(公告)号:CN111638376A
公开(公告)日:2020-09-08
申请号:CN202010453251.0
申请日:2020-05-26
Applicant: 山东省科学院海洋仪器仪表研究所
Abstract: 本发明公开了一种高光谱水体吸收衰减长期自动测量装置及方法,该装置包括高光谱水体吸收衰减测量仪、样品室、海水过滤器和纯净水储罐,样品室的水样出口连接三通管一,三通管一分别连接三通管二和三通管三,三通管二连接三通管四和出口一;三通管三连接三通管五和出口二;三通管四连接海水过滤器的出口和测量仪的A管下口,三通管五连接纯净水储罐和测量仪的C管下口;A管上口连接样品室的A口,C管上口连接样品室的C口,A口和C口在样品室内分别连接二入一出单向阀的两个入口;三通管六的另一出口连接样品室的水样进口。本发明所公开的装置及方法可以避免气泡在测量仪内集聚,并且能够自动清洗,保证测量效果。
-
公开(公告)号:CN110057767A
公开(公告)日:2019-07-26
申请号:CN201910400902.7
申请日:2019-05-15
Applicant: 山东省科学院海洋仪器仪表研究所
Abstract: 本发明公开了一种基于浮标的高光谱水体吸收衰减测量装置及方法,该装置包括高光谱水体吸收衰减测量仪,测量仪的入水口通过管路一连接四通管,四通管通过管路二连接潜水泵,管路二上设置三通阀一,三通阀一和三通管一连接,三通管一与四通管之间连接海水过滤器,三通管一的另一出口连接电磁阀一;测量仪的出水口通过管路三连接三通阀二,三通阀二与三通管二连接,三通阀二的另一出口连接电磁阀二,三通管二与四通管之间通过电磁阀三连接,三通管二通过管路四连接真空泵,真空泵分别连接纯净水储罐和空气干燥器;本发明所公开的装置及方法解决了仪器无法长期在海水中使用的问题,实现了对海水水体光谱的吸收和衰减系数进行长期、原位、全天候监测。
-
公开(公告)号:CN106011545A
公开(公告)日:2016-10-12
申请号:CN201610365606.4
申请日:2016-05-30
Applicant: 山东省科学院海洋仪器仪表研究所
CPC classification number: C22C21/003 , C22C1/026 , C22C1/03
Abstract: 本发明公开了一种铝‑锑中间合金及其制备方法和应用,其组分及质量百分比为铝89.0‑97.0%,锑3.0‑11.0%,所述锑是以亚微米尺度的锑化铝相的状态弥散分布于所述中间合金中。本发明的铝‑锑中间合金可应用在铝硅合金铸造生产中。本发明的铝‑锑中间合金中亚微米尺度的锑化铝相的弥散度高、偏析程度低,扩散速度快,对共晶硅与初生硅的细化变质效果良好,可以解决铝‑硅系合金的硅粗大、熔体处理过程吸气倾向高等技术问题。
-
公开(公告)号:CN105203491A
公开(公告)日:2015-12-30
申请号:CN201510652093.0
申请日:2015-10-10
Applicant: 山东省科学院海洋仪器仪表研究所
IPC: G01N21/3504
Abstract: 本发明提供了一种深海甲烷浓度原位检测系统,其特点是:利用甲烷气体吸收红外光的特点,应用气液分离技术,将海水水样中的甲烷成分分离后,用红外传感器对其含量进行检测。检测系统由法兰盘、减压阀、减压舱、入水泵、耐高压出水泵、气泵、电磁阀、电路板、气液分离光学检测室、固定底板、固定支架和壳体组成,其外观是一个带有进出水口和电气水密接头的小型密封装置。本发明对非甲烷气体的响应度小,系统信噪比高,在深海海流剧烈波动的情况下,抗干扰能力强,且结构简单、体积小、成本低,便于实现环境适应性更强的小型海洋监测系统集成,能够布放于深海恶劣环境中,在长期无人职守的情况下,对海水中甲烷浓度指标进行原位检测。
-
公开(公告)号:CN103235594B
公开(公告)日:2015-05-13
申请号:CN201310112277.9
申请日:2013-04-02
Applicant: 山东省科学院海洋仪器仪表研究所
IPC: G05D1/02
Abstract: 本发明公开了一种牵引控制系统及牵引位置校正计算方法,包括钢丝绳转轮传动系统、轨道往复车和用于检测钢丝绳转轮转动位置的多圈式绝对值旋转编码器,在轨道往复车上安装有永磁铁,在轨道往复车行走的轨道的起点位置处安装有磁性限位开关,所述轨道往复车在到达轨道起点位置时,轨道往复车上的永磁铁刚好被所述的磁性限位开关所感应;所述控制器根据多圈式绝对值旋转编码器和磁性限位开关反馈的检测信号计算轨道往复车的当前牵引位置。本发明的牵引控制系统位置校正计算方法不仅解决了由于旋转编码器计数过零点所导致的牵引位置计算错误的问题,而且系统结构设计简单,成本低,故障环节少,可靠性高,为物品的准确定位输送提供了有力的技术保证。
-
公开(公告)号:CN110057767B
公开(公告)日:2024-07-02
申请号:CN201910400902.7
申请日:2019-05-15
Applicant: 山东省科学院海洋仪器仪表研究所
Abstract: 本发明公开了一种基于浮标的高光谱水体吸收衰减测量装置及方法,该装置包括高光谱水体吸收衰减测量仪,测量仪的入水口通过管路一连接四通管,四通管通过管路二连接潜水泵,管路二上设置三通阀一,三通阀一和三通管一连接,三通管一与四通管之间连接海水过滤器,三通管一的另一出口连接电磁阀一;测量仪的出水口通过管路三连接三通阀二,三通阀二与三通管二连接,三通阀二的另一出口连接电磁阀二,三通管二与四通管之间通过电磁阀三连接,三通管二通过管路四连接真空泵,真空泵分别连接纯净水储罐和空气干燥器;本发明所公开的装置及方法解决了仪器无法长期在海水中使用的问题,实现了对海水水体光谱的吸收和衰减系数进行长期、原位、全天候监测。
-
公开(公告)号:CN110470426B
公开(公告)日:2024-06-28
申请号:CN201910771851.9
申请日:2019-08-21
Applicant: 山东省科学院海洋仪器仪表研究所
Abstract: 本发明公开了一种可同时测量温度和压力的光纤光栅传感器及测量方法,该传感器包括底部开口的薄壁筒、封装在薄壁筒外部的保护外壳,所述薄壁筒和保护外壳之间存在间隙;所述薄壁筒外表面固定有第一光纤光栅和第二光纤光栅,所述第一和第二光纤光栅的光纤尾纤穿出保护外壳的顶部,所述薄壁筒的横截面为由两条直线边和分别连接两条直线边两端的两个半圆弧围成的类椭圆形,所述第一光纤光栅沿薄壁筒轴线方向固定在薄壁筒的直线边所在面的中央,所述第二光纤光栅沿薄壁筒轴线方向固定在薄壁筒的半圆弧所在面的中央,且第一和第二光纤光栅的中心与薄壁筒的中心位于同一高度上,本发明所公开的传感器结构新颖、灵敏度高、测量结果可靠、应用广。
-
公开(公告)号:CN112014322B
公开(公告)日:2022-10-18
申请号:CN202010850768.3
申请日:2020-08-21
Applicant: 山东省科学院海洋仪器仪表研究所
Abstract: 本发明公开了一种用于水样光学测量方法的气泡消除装置,包括水箱、集气罩、虹吸管路和微气泡吸附管路;水箱上设置有进水口和出水口,进水口中安装有注水管,通过注水管泵入到水箱中的水样形成漩涡状水流,出水口外接出水管路;集气罩内置于水箱中,用于收集水箱中漩涡状水流位于中心区域的水样;集气罩连接集气管,集气管延伸至水箱的外部,连接虹吸管路;虹吸管路用于将集气罩收集的水样在虹吸力的作用下排出水箱;微气泡吸附管路用于将出水管路中含有气泡的水样在虹吸力的作用下吸入到虹吸管路中。本发明的气泡消除装置基于离心力原理和虹吸效应清除待测水样中的气泡,解决了待测水样因受气泡干扰而影响测量准确度的问题。
-
公开(公告)号:CN111983563A
公开(公告)日:2020-11-24
申请号:CN202010891248.7
申请日:2020-08-30
Applicant: 山东省科学院海洋仪器仪表研究所
Abstract: 基于分布式光纤声波传感的远距离超前反潜预警阵列及系统,包括锚、潜标、缆绳组成的固定单元;传感光缆沿诸固定单元不断纵横延伸,进而在近海底层组成一个二维的探测阵列平面,实现传感光缆在xz平面内呈近似方波信号的二维排布,还包括海底工作站、浮标及信号传输缆;传感光缆反射光信号经解调后获得探测目标的方位、运动速度及方向信息,发送到浮标,再经由卫星发送回地面岸站。本发明将分布式光纤声波传感技术与反潜探测需求相结合,提出沿领海边境线铺设全光纤长距离分布式水声侦测实时预警系统,能对入侵我国海洋边界的潜艇实现提前预警,能够实时并精确的定位潜艇位置,降低反潜探测成本,提高反潜作业效率,保卫我国海洋权益。
-
公开(公告)号:CN110470426A
公开(公告)日:2019-11-19
申请号:CN201910771851.9
申请日:2019-08-21
Applicant: 山东省科学院海洋仪器仪表研究所
Abstract: 本发明公开了一种可同时测量温度和压力的光纤光栅传感器及测量方法,该传感器包括底部开口的薄壁筒、封装在薄壁筒外部的保护外壳,所述薄壁筒和保护外壳之间存在间隙;所述薄壁筒外表面固定有第一光纤光栅和第二光纤光栅,所述第一和第二光纤光栅的光纤尾纤穿出保护外壳的顶部,所述薄壁筒的横截面为由两条直线边和分别连接两条直线边两端的两个半圆弧围成的类椭圆形,所述第一光纤光栅沿薄壁筒轴线方向固定在薄壁筒的直线边所在面的中央,所述第二光纤光栅沿薄壁筒轴线方向固定在薄壁筒的半圆弧所在面的中央,且第一和第二光纤光栅的中心与薄壁筒的中心位于同一高度上,本发明所公开的传感器结构新颖、灵敏度高、测量结果可靠、应用广。
-
-
-
-
-
-
-
-
-