一种利用层转移技术制备绝缘体上锗硅材料的方法

    公开(公告)号:CN101866874B

    公开(公告)日:2013-05-22

    申请号:CN201010189312.3

    申请日:2010-06-01

    Abstract: 本发明涉及一种利用层转移技术制备绝缘体上锗硅(SGOI)材料的方法。首先在体硅上外延Siepi/Si1-xGex结构的多层材料,其中0<x<1,Siepi为外延材料的上表面。控制外延的Si1-xGex薄膜的厚度,使其小于临界厚度,以保证这层薄膜是完全应变的。然后使用层转移的方法将Siepi/Si1-xGex转移到一个SiO2/Si结构的支撑材料上,形成Si1-xGex/Siepi/SiO2/Si结构的多层材料。通过退火,使得材料中的Si1-xGex发生弛豫,弛豫过程中产生的位错主要分布在Siepi中,使得Si1-xGex保持了较高的晶格质量,然后通过外延的方法在Si1-xGex上继续外延一层Si薄膜,该薄膜将保持应变,最终得到Si/Si1-xGex/Siepi/SiO2/Si的SGOI材料。

    一种降低Si表面粗糙度的方法

    公开(公告)号:CN102751184A

    公开(公告)日:2012-10-24

    申请号:CN201210254007.7

    申请日:2012-07-20

    Abstract: 本发明提供一种降低Si表面粗糙度的方法,属于半导体领域,包括步骤:首先提供一至少包括SixGe1-x层以及结合于其表面的Si层的层叠结构,采用选择性腐蚀或机械化学抛光法去除所述SixGe1-x层,获得具有残留SixGe1-x材料的Si层粗糙表面,然后采用质量比为1∶3~6∶10~20的NH4OH:H2O2:H2O溶液对所述Si层粗糙表面进行处理,去除所述残留SixGe1-x材料,以获得光洁的Si层表面。本发明可以有效降低去除应变硅表面的SixGe1-x材料残余,降低应变硅表面的粗糙度,获得光洁的应变硅表面,为后续的器件制造工艺带来了极大的便利。本发明工艺简单,适用于工业生产。

    一种绝缘体上超薄应变材料的制备方法

    公开(公告)号:CN101958270B

    公开(公告)日:2012-09-26

    申请号:CN201010223124.8

    申请日:2010-07-09

    Abstract: 本发明涉及一种绝缘体上超薄应变材料的制备方法,其特征在于在选定的半导体衬底材料上外延生长一层半导体材料,该外延生长的半导体材料厚度在临界厚度以内,且使晶体处于完全应变状态,接着进行氧离子注入,使氧离子主要分布在半导体衬底材料中,最后进行800-1200℃高温退火,在形成绝缘埋层的同时,使外延生长的半导体材料顶部发生弛豫,将应力转移到衬底材料的顶部中去,形成新的应变层。所制备的超薄应变材料层≤50nm。本发明只需一步氧离子注入结合外延工艺而省去键合和剥离工艺,使绝缘体上硅得以简单实现。

    一种CMOS器件及其制作方法
    36.
    发明公开

    公开(公告)号:CN102664166A

    公开(公告)日:2012-09-12

    申请号:CN201210175119.3

    申请日:2012-05-31

    Abstract: 本发明提供一种CMOS器件及其制作方法,于具有SiO2层的Si衬底中分别形成第一深度的第一凹槽及大于所述第一深度的第二深度的第二凹槽,于所述第一凹槽及第二凹槽内分别形成Ge层、止刻层以及Ⅲ-Ⅴ族半导体层,然后采用选择性腐蚀技术刻蚀上述结构至所述第一凹槽内的Ge层,并使所述Ge层、SiO2层及Ⅲ-Ⅴ族半导体层处于同一平面,最后在所述Ge层上制作PMOS器件,在所述Ⅲ-Ⅴ族半导体层上制作NMOS器件以完成所述CMOS器件的制作。本发明只需在外延后通过选择性腐蚀工艺及抛光工艺即可获得具有Ge层及Ⅲ-Ⅴ族半导体层混合材料沟道的衬底,工艺简单,有利于降低成本;在该衬底上制备CMOS器件,具有较高的工作速度,有利于提高器件的性能。

    一种混晶材料的制备方法及用该材料制备的半导体器件

    公开(公告)号:CN102064097A

    公开(公告)日:2011-05-18

    申请号:CN200910198914.2

    申请日:2009-11-17

    Inventor: 王曦 张苗 薛忠营

    Abstract: 本发明涉及一种混晶材料的制备方法及用该材料制备的半导体器件。首先在绝缘体上硅(SOI,Silicon On Insulator)材料的顶层硅上进行第一次图形化刻蚀,将窗口区向下刻蚀到露出支撑衬底硅层;再对埋氧层进行选择性刻蚀,在顶层硅和支撑衬底硅层之间形成腔体,使得埋氧层形成柱状结构;通过化学气相沉积在材料表面依次沉积SiGe合金层和间隔层;进行第二次图形化刻蚀,将第一次图形化刻蚀形成的窗口区由外延形成的TEOS、间隔层和SiGe合金层刻蚀掉,露出支撑硅衬底层;从露出的支撑硅衬底的上表面开始外延Si、Ge或者SiGe合金层;然后对整个材料的上表面进行刻蚀或者化学机械抛光,去除上表面由于外延形成的间隔层,最终在材料的上表面形成混合晶体(或混合晶向)材料。

Patent Agency Ranking