-
公开(公告)号:CN117576467A
公开(公告)日:2024-02-20
申请号:CN202311560242.1
申请日:2023-11-22
Applicant: 安徽大学
IPC: G06V10/764 , G06V10/20 , G06V10/82 , G06V10/44 , G06V10/56 , G06V10/77 , G06N3/0464 , G06N3/047 , G06N3/0455 , G06V10/80 , G06N3/08 , G06N3/045
Abstract: 本发明涉及一种融合频率域和空间域信息的农作物病害图像识别方法,与现有技术相比解决了难以在复杂环境下实现农作物病害检测的缺陷。本发明包括以下步骤:农作物病害图像的获取及预处理;双分支病害图像识别模型的构建;双分支病害图像识别模型的训练;待识别农作物病害图像的获取;农作物病害图像识别结果的获得。本发明结合图像频率域信息与空间域信息提出了双分支的深度神经网络用于农作物病害识别,频率分支接受频域信息作为输入用于提取丰富的农作物病害频率分量特征,可变形注意力Transformer分支擅长于表征全局特征并且有选择的关注农作物病害局部区域特征,融合方法MSAF更好的融合农作物病害频率特征和空间特征。
-
公开(公告)号:CN117218537B
公开(公告)日:2024-02-13
申请号:CN202311178242.5
申请日:2023-09-13
Applicant: 安徽大学
IPC: G06V20/10 , G06V10/764 , G06V10/42 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种基于Transformer和非局部神经网络双分支架构的高光谱图像分类方法,包括:输入高光谱图像H;对输入的高光谱图像H进行双分支处理:将多个立方块Hsp作为空间子网络的输入,取H的光谱信息Hspe作为光谱子网络的输入;得到一维空间特征;得到一维光谱特征;构建多层感知器模块将提取的一维空间特征和一维光谱特征进行融合,得到分类结果。本发明通过对高光谱图像作为研究对象,用双分支策略以在充分保持计算效率的同时减少计算量和节约成本;本发明所提出的空间注意力机制探索中心像素和周围像素的相似性,提高了中心像素识别的准确性,增强了空间提取能力。
-
公开(公告)号:CN117315459A
公开(公告)日:2023-12-29
申请号:CN202311177199.0
申请日:2023-09-12
Applicant: 安徽大学
IPC: G06V20/10 , G06V10/774 , G06V10/764 , G06V10/77 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种轻量型卷积神经网络的水稻叶片病害识别方法,与现有技术相比解决了水稻叶片病害识别模型识别效率低的缺陷。本发明包括以下步骤:训练样本的获取;构建水稻叶片病害识别模型;水稻叶片病害识别模型的训练;待识别水稻叶片的获取;水稻叶片病害识别结果的获得。本发明能够实现复杂背景下的水稻病害识别,通过模型的轻量化设计使得其可以加载在移动设备上,方便在野外自然场景中自动水稻叶部病害种类,解决了复杂环境、参数多、CNN模型过大等问题。
-
公开(公告)号:CN117132853A
公开(公告)日:2023-11-28
申请号:CN202310631473.0
申请日:2023-05-31
Applicant: 安徽大学
IPC: G06V10/80 , G01N21/25 , G06V20/10 , G06V10/771 , G06F17/18
Abstract: 本发明涉及一种基于CARS‑Ridge算法融合新型指数的小麦赤霉病识别方法,包括:获得小麦赤霉病冠层高光谱数据;通过CARS、PCA和SPA三种算法对获取的小麦赤霉病冠层高光谱数据进行降维;通过RF、PLSR和Ridge三种算法进行建模,得到9个小麦赤霉病识别模型;通过对9个小麦赤霉病识别模型的结果进行十折交叉验证,确定最优模型;构建两个新型指数;将新型指数与最优模型进行融合,得到最优小麦赤霉病识别模型。本发明通过数据降维并结合新型指数构建评价了高光谱数据在小麦赤霉病识别中的应用潜力,提出了CARS‑Ridge算法和新型指数的开发,确定了最准确的小麦赤霉病识别模型,即最优小麦赤霉病识别模型;大大提高了现有病害反演的精度,克服了小麦赤霉病识别不准确的缺陷。
-
公开(公告)号:CN108596104B
公开(公告)日:2021-01-05
申请号:CN201810383173.4
申请日:2018-04-26
Applicant: 安徽大学
Abstract: 本发明涉及一种带有病害特征预处理功能的小麦白粉病遥感监测方法,与现有技术相比解决了小麦病害特征冗余度高、监测精度差的缺陷。本发明包括以下步骤:遥感数据的获取和预处理;特征变量的提取;特征变量的处理;白粉病监测模型的构建和优化;小麦白粉病遥感监测结果的获得。本发明通过将relief与mRMR两种特征选择技术与经过遗传方法优化的支持向量机结合,形成对区域尺度的白粉病进行有效遥感监测。
-
公开(公告)号:CN119397945A
公开(公告)日:2025-02-07
申请号:CN202411443505.5
申请日:2024-10-16
Applicant: 安徽大学
IPC: G06F30/28 , G06F30/20 , G06F113/08 , G06F119/14
Abstract: 本发明涉及一种用于大田环境高通量植物表型平台的多元数据动态融合校正方法,与现有技术相比解决了难以实现多环境数据融合修正的缺陷。本发明包括以下步骤:环境数据与作物表型数据的获取;进行风速风向校正;进行光照校正;进行温度校正;数据的融合校正。本发明通过实时算法对多源数据进行校正和融合,从而实现高精度的表型数据多层次的动态融合校正。
-
公开(公告)号:CN118470422A
公开(公告)日:2024-08-09
申请号:CN202410654325.5
申请日:2024-05-24
Applicant: 安徽大学
IPC: G06V10/764 , G06V10/77 , G06V10/40 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/048 , G06N3/084
Abstract: 本发明涉及一种基于CNN和ViT的柑橘黄龙病害识别方法,包括:柑橘黄龙病害图像样本的获取并进行预处理;组成数据集,将数据集划分为训练集、验证集和测试集;构建柑橘黄龙病害图像识别模型;对训练集进行预处理,将预处理后的训练集输入柑橘黄龙病害识别模型中进行训练;获取待检测的柑橘黄龙病害图像并进行预处理,输入训练后的柑橘黄龙病害识别模型,得到柑橘黄龙病害识别结果。本发明通过将CNN分支模型连接ViT分支模型,实现对柑橘黄龙图像病害的准确识别;使用三个级联的残差模块,相较于传统ResNet参数量大大减少,结合轻量化注意力模块使得在参数量大幅下降的同时,提高了模型精度,有效地减轻了背景干扰,提升了病虫害的识别性能。
-
公开(公告)号:CN118443665A
公开(公告)日:2024-08-06
申请号:CN202410530052.3
申请日:2024-04-29
Applicant: 安徽大学
IPC: G01N21/84 , G01N21/01 , G01N1/24 , G01D21/02 , G01W1/02 , G01W1/14 , C12M1/34 , C12M1/26 , C12M1/36 , C12M1/00
Abstract: 本发明公开了一种气传真菌孢子与气象因子一体化智能监测装置与方法,涉及智能农机装备和生物科学领域,包括:显微图像采集机构、孢子捕捉风道机构、载物台和载玻片片仓机构,本发明在田间野外环境下可实现空中孢子捕捉和显微图像采集,利用本发明所述的监测装置和方法,解决了无法对农田中孢子浓度进行自动、实时、大尺度监测,导致难以把握大尺度农田真菌孢子的实时和动态变化情况的问题,可采集放大100~1000倍的孢子显微图像,工作流程顺畅且操作简便,具有更广阔的的应用前景。
-
公开(公告)号:CN118195331A
公开(公告)日:2024-06-14
申请号:CN202311811653.3
申请日:2023-12-27
Applicant: 安徽大学
IPC: G06Q10/0637 , G06Q10/067 , G06Q50/02 , G06F18/10 , G06F18/213 , G06F18/214
Abstract: 本发明涉及一种基于多源卫星遥感的水稻纹枯病生境适宜性分析方法,包括:获取多源数据;对多源数据进行预处理;进行特征因子的筛选;采用八种模型进行建模,经筛选得到八个初步模型;对比和分析各个初步模型的精度,筛选出初步模型进行集成,得到生境适宜性分析模型,将待分析区域的筛选后的特征因子输入,输出待分析区域的水稻纹枯病生境适宜性结果;对水稻纹枯病生境适宜性结果进行分析,研究纹枯病适生区的分布,变化和主要影响因素。本发明通过生境适宜性分析模型有助于综合考虑影响水稻纹枯病的各特征因子,通过生境适宜性分析模型和时空分析方法,可以及早预警纹枯病可能出现的新生境,从而采取防范措施,减轻其对农业生产的影响。
-
公开(公告)号:CN117649364B
公开(公告)日:2024-05-07
申请号:CN202410126237.8
申请日:2024-01-30
Applicant: 安徽大学
IPC: G06T5/73 , G06T5/60 , G06N3/045 , G06N3/0464 , G06N3/0475 , G06N3/048 , G06N3/094
Abstract: 本发明公开了一种基于改进DeblurGANv2模型的真菌孢子显微图像去模糊方法及装置,该方法包括:获取真菌孢子显微图像数据集;基于改进DeblurGANv2模型构建真菌孢子显微图像去模糊网络模型,所述改进DeblurGANv2模型包括在FPN网络中融入CBAM注意力模块并增加一条自底向上的5层特征增强路径;将真菌孢子显微图像数据集输入真菌孢子显微图像去模糊网络模型对生成器和判别器进行训练,得到训练完成的真菌孢子显微图像去模糊网络模型;基于训练完成的去模糊网络模型中的生成器对待处理的模糊真菌孢子显微图像进行去模糊。本发明有效提高了真菌孢子显微图像去模糊后的图像质量。
-
-
-
-
-
-
-
-
-