-
公开(公告)号:CN114817516B
公开(公告)日:2024-08-09
申请号:CN202210448769.4
申请日:2022-04-26
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/335 , G06F16/35 , G06F16/951 , G06F40/242 , G06F40/279 , G06F40/30 , G06N3/088
Abstract: 本发明涉及一种零样本条件下基于逆向匹配的画像映射方法,包括在数据特征标签和画像标签两个不同体系间建构双相关文本语料库,使用逆向匹配对语料库进行筛选修正;通过人工标注构建分类语料库,并训练模型建立画像体系间的映射关系;采用基于持续响应衰减的更新机制,并结合标签历史状态对时序变化的画像相关更新数据进行修正。本方法从扩展数据的角度出发,采用基于逆向匹配的文本库构建方法,引入与原始标签相关的外部文本数据扩展并增强标签的语义表达,再引入与用户画像相关的外部数据进行标注建立扩展标签和标注数据之间的联系,从而挖掘出原始特征标签隐含的丰富含义,达到从少量标签序列中计算目标画像的目的。
-
公开(公告)号:CN115034286B
公开(公告)日:2024-07-02
申请号:CN202210435266.3
申请日:2022-04-24
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/24 , G06F18/214 , G06N3/0455 , G06N3/084
Abstract: 本发明公开了一种基于自适应损失函数的异常用户识别方法和装置,其中,该方法包括:获取web系统的用户行为日志数据样本,并将用户行为日志数据样本向量化,得到无标签数据样本和有标签数据样本;进行数据预处理得到训练数据集;基于训练数据集的输入特征训练第一自编码器模型,并基于第一自编码器模型构造无标签数据样本损失函数和有标签数据样本损失函数;迭代优化第一自编码器模型并构造异常用户检测优化问题函数,得到第二自编码器模型;基于第二自编码器模型,对无标签数据样本进行异常点检测,以识别异常用户。本发明解决实际业务场景中,无标签数据中存在异常点,采用固定损失函数难以提高准确率,误报率高的技术问题。
-
公开(公告)号:CN116628497A
公开(公告)日:2023-08-22
申请号:CN202310583452.6
申请日:2023-05-23
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/214 , G06F18/2415
Abstract: 本发明公开了一种基于联邦泛化数据处理方法、系统、计算设备及存储介质,所述方法包括:基于联邦对比学习进行数据建模,将数据样本标记为异常样本和正常样本的不同类别,每个本地模型在其本地数据集上进行联邦检测任务的迭代训练,并逐步更新其自己的参数;本地更新后,在可信的中央服务器聚合所有参与联邦检测任务的本地模型的参数,经过计算后聚合形成一个全局模型,然后服务器将所述全局模型分发给参与的终端,进行下次迭代训练。本发明实现在“数据孤岛”状态下对于样本的充分学习和利用,基于对比学习技术,拉近正常样本之间的距离,拉远异常样本距离,从而实现在保护隐私的前提下,对数据的建模,并为异常检测打下基础。
-
公开(公告)号:CN111159990B
公开(公告)日:2022-09-30
申请号:CN201911244936.8
申请日:2019-12-06
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06F40/186 , G06F40/126 , G06F40/284 , G06F16/33 , G06F16/31
Abstract: 本发明提出一种基于模式拓展的通用特殊词识别方法及系统,提出了一种基于基础词的音形编码,常用汉字音节,常用汉字结构以及特殊字符映射节点来构建前缀树,通过比较字符编码相似度进行模糊匹配,完成新词提取的方法及系统。本发明可以应用于大量文本中特定词的发现提取,某些任务的数据集的提取生成,给定文本数据集的预处理等场景中,比如短信、微博等数据集的筛选以及纠正等文本预处理过程。本发明为下一步的文本分类任务提供了数据来源和基本标注,也对文本数据中新词的发现和纠正提供了帮助。
-
公开(公告)号:CN106055633A
公开(公告)日:2016-10-26
申请号:CN201610367978.0
申请日:2016-05-30
Applicant: 国家计算机网络与信息安全管理中心
CPC classification number: G06F16/35 , G06K9/6256 , G06K9/6269
Abstract: 本发明提出了一种中文微博主客观句分类方法,所述方法包括:根据预设的主观句训练语料集和客观句训练语料集形成如下的六个特征集:3‑POS主观模式特征集、句法依存关系特征集、情感词特征集、情感影响因子特征集、语气词及标点符号特征集、字数及链接特征集;根据所述六个特征集,利用支持向量机SVM算法,形成中文微博主客观句分类模型,以利用所述中文微博主客观句分类模型对待测试语句进行主客观句分类。所述方法不但考虑了中文文本的语言学特点,同时也充分利用微博的个性化特征,使得本文所选取的特征更加接近微博本身的语义描述。
-
公开(公告)号:CN104361037A
公开(公告)日:2015-02-18
申请号:CN201410591807.7
申请日:2014-10-29
Applicant: 国家计算机网络与信息安全管理中心
CPC classification number: G06F17/30705 , G06F17/271
Abstract: 本发明公开了一种微博分类方法及装置。该方法包括:步骤1,对训练语料集合进行预处理,对预处理后的训练语料进行分词,获取候选特征,并对候选特征进行权重计算,根据权重计算结果进行特征选择,获取最终的分类特征;步骤2,根据最终的分类特征,采用贝叶斯分类器进行模型训练,获取分类模型;步骤3,采用贝叶斯分类器根据分类模型对微博文档进行分类。借助于本发明的技术方案,提高了分类的召回率与准确率。
-
公开(公告)号:CN117768343B
公开(公告)日:2024-08-30
申请号:CN202311587718.0
申请日:2023-11-24
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L43/02 , H04L43/062 , H04L47/70
Abstract: 本发明提供一种针对隧道流量的关联方法和装置,其中所述方法包括:获取预建立的网络隧道的多个入口节点流和多个出口节点流;确定与每个出口节点流对应的候选入口节点流,分别计算多个候选入口节点流的累计传输量距离;将每个出口节点流输入至自编码网络,输出对应的映射入口节点流,分别计算映射入口节点流和多个候选入口节点流的降噪距离;将多个候选入口节点流输入至优化表示生成器,分别输出多个候选入口节点流之间的优化表示距离;根据多个候选入口节点流的累计传输量距离、和映射入口节点流的降噪距离以及多个候选入口节点流之间的优化表示距离,对候选入口节点流进行筛选,确定每个出口节点流对应的目标入口节点流。
-
公开(公告)号:CN116561599A
公开(公告)日:2023-08-08
申请号:CN202310538213.9
申请日:2023-05-12
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/22 , G06F17/16 , G06F18/25 , G06N3/0464 , G06N3/084
Abstract: 本发明涉及社交网络技术领域,尤其为基于少样本几何深度学习的用户重识别系统及方法,包括:生成排序模块:用于生成候选实体,并对候选实体进行相应排序;向量转化模块:用于通过图卷积的方式将待链接实体和候选实体转换成含有语义信息的向量表示;深度训练模块:用于使用几何深度学习对所有的用户属性、内容、关系进行训练;身份重识别模块:用于计算两个实体之间的相似度,进行用户身份的重识别。本发明通过使用少样本几何深度学习实现用户身份重识别,通过图卷积的方式将待链接实体和候选实体转换成含有语义信息的向量表示,生成了有用的实体嵌入,并通过深度学习网络对所有的用户属性、内容、关系进行学习输出,获得更为准确的用户身份重识别信息。
-
公开(公告)号:CN115034286A
公开(公告)日:2022-09-09
申请号:CN202210435266.3
申请日:2022-04-24
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种基于自适应损失函数的异常用户识别方法和装置,其中,该方法包括:获取web系统的用户行为日志数据样本,并将用户行为日志数据样本向量化,得到无标签数据样本和有标签数据样本;进行数据预处理得到训练数据集;基于训练数据集的输入特征训练第一自编码器模型,并基于第一自编码器模型构造无标签数据样本损失函数和有标签数据样本损失函数;迭代优化第一自编码器模型并构造异常用户检测优化问题函数,得到第二自编码器模型;基于第二自编码器模型,对无标签数据样本进行异常点检测,以识别异常用户。本发明解决实际业务场景中,无标签数据中存在异常点,采用固定损失函数难以提高准确率,误报率高的技术问题。
-
公开(公告)号:CN112085614A
公开(公告)日:2020-12-15
申请号:CN202010778007.1
申请日:2020-08-05
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06Q50/00 , G06F16/9536
Abstract: 一种基于时空行为数据的跨社交网络虚拟用户身份对齐方法,主要步骤为:1)预处理用户在社交网络上产生的时空行为数据,生成用户时空行为序列;2)基于时空行为序列数据定义并计算社交网络间任意两用户的相似度;3)构建以社交网络用户为节点的二部图,相同社交网络用户节点间无边,不同社交网络用户节点间边的权重等于用户相似度;4)计算二部图的最大权匹配;5)基于最大权匹配结果生成虚拟身份对齐结果。本发明能够为全方位分析用户在社交网络中扮演的角色、准确估计用户真实属性提供重要理论基础与技术支撑,所需要数据在现实社交网络中易于获取,计算过程易于通过分布式框架进行,可以在大规模复杂网络中快速做到虚拟用户身份对齐。
-
-
-
-
-
-
-
-
-