-
公开(公告)号:CN118568487A
公开(公告)日:2024-08-30
申请号:CN202410548464.X
申请日:2024-05-06
IPC分类号: G06F18/214 , G06F18/25 , G06F18/2431 , G06N3/042
摘要: 本申请实施例提供一种多模态轻量级动态知识增强方法、装置及存储介质,所述方法包括:基于图像小样本集的向量表征和文本小样本集的向量表征,以多模态视觉码书的形式构建图像小样本知识库和文本小样本知识库;基于单模态搜索的方式从所述图像小样本知识库或所述文本小样本知识库中确定待融合表征的跨模态表征,融合所述待融合表征和所述跨模态表征,得到知识增强后的融合表征。本申请实施例提供的多模态轻量级动态知识增强方法、装置及存储介质,在现有大规模预训练多模态模型的强大表征学习基础上,融合罕见且细粒度的跨模态表征信息,以此提高原始表征的质量,并显著提升对特定信息的检索效率。
-
公开(公告)号:CN116127964A
公开(公告)日:2023-05-16
申请号:CN202211600947.7
申请日:2022-12-13
IPC分类号: G06F40/284 , G06F40/30 , G06F16/35 , H04L9/40 , H04W12/12
摘要: 本发明公开了一种融合传播关系的诈骗信息的检测方法。该方法包括:获取第一信息组、诈骗账号库以及正常账号库,其中第一信息组中的每一个信息包括文本信息和发信账号;根据诈骗账号库和正常账号库从第一信息组中确定第二信息组,其中第二信息组中的每一个信息的发信账号在诈骗账号库和正常账号库中都不存在;根据第二信息组得到多个目标信息组,其中每一个目标信息组中的第一发信账号与第二发信账号的相似文本信息的数量大于第一阈值;计算每一个目标信息组的诈骗权重值;在目标信息组的诈骗权重值大于第二阈值的情况下,将目标信息组中的每一个文本信息确定为诈骗信息。本发明解决了对大量诈骗信息进行检测时,处理效率低的技术问题。
-
公开(公告)号:CN114625978B
公开(公告)日:2024-11-08
申请号:CN202011454130.4
申请日:2020-12-10
申请人: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC分类号: G06F18/22 , G06F18/25 , G06N3/042 , G06N3/045 , G06N3/0464 , G06N3/0985 , G06F16/9536 , G06Q50/00
摘要: 本发明提供一种基于类型感知的异质网络用户锚链接预测方法及电子装置,包括收集待检测网络和目标网络的网络信息,构建待检测异质网络和目标异质网络;获取每一节点各维度的初始特征向量,得到每个节点的初始特征向量表示;将初始特征向量表示输入基于自注意力图神经网络进行学习,计算各节点的类型感知向量和类型融合向量;通过待检测异质网络和目标异质网络中各节点对之间属于同一类型的类型感知向量及类型融合向量的相似度,判断待检测网络和目标网络是否为锚链接。本发明采用注意力机制捕获节点与类型信息之间影响,利用图注意力网络学习类型感知向量和类型融合向量,解决异质网络中对多种类型信息建模的问题,取得较好的锚链接预测效果。
-
公开(公告)号:CN117768343B
公开(公告)日:2024-08-30
申请号:CN202311587718.0
申请日:2023-11-24
申请人: 国家计算机网络与信息安全管理中心
IPC分类号: H04L43/02 , H04L43/062 , H04L47/70
摘要: 本发明提供一种针对隧道流量的关联方法和装置,其中所述方法包括:获取预建立的网络隧道的多个入口节点流和多个出口节点流;确定与每个出口节点流对应的候选入口节点流,分别计算多个候选入口节点流的累计传输量距离;将每个出口节点流输入至自编码网络,输出对应的映射入口节点流,分别计算映射入口节点流和多个候选入口节点流的降噪距离;将多个候选入口节点流输入至优化表示生成器,分别输出多个候选入口节点流之间的优化表示距离;根据多个候选入口节点流的累计传输量距离、和映射入口节点流的降噪距离以及多个候选入口节点流之间的优化表示距离,对候选入口节点流进行筛选,确定每个出口节点流对应的目标入口节点流。
-
公开(公告)号:CN115080871B
公开(公告)日:2024-05-17
申请号:CN202210847062.0
申请日:2022-07-07
申请人: 国家计算机网络与信息安全管理中心
IPC分类号: G06F16/9536 , G06F16/901 , G06N3/0464 , G06N3/042 , G06N3/045 , G06N3/08 , G06Q50/00
摘要: 本发明公开了一种跨社交网络社交用户对齐方法,涉及社交网络的用户关系挖掘领域。本发明为了解决现有社交用户对齐方法不能跨社交网络、计算精度低、对齐效率低的缺陷,采用如下步骤实现:采集社交网络的用户属性信息,构建用户关系拓扑图;根据边权重和节点的出入度计算节点权重;构建一阶近邻关系模型和二阶近邻关系模型,确定一阶邻居节点和二阶邻居节点,得到用户节点之间的相互关系;构建社交对齐神经网络,通过社交对齐神经网络对用户关系拓扑图中各节点进行邻居节点的信息聚合、拼接与非线性变换,得到跨社交网络的社交用户身份对齐结果。本发明主要用于通过跨社交网络对其社交用户实现用户关系挖掘。
-
公开(公告)号:CN117172245A
公开(公告)日:2023-12-05
申请号:CN202310610786.8
申请日:2023-05-26
申请人: 国家计算机网络与信息安全管理中心
IPC分类号: G06F40/284 , G06F18/24 , G06F18/22
摘要: 本发明实施例涉及一种控制方法及控制系统,所述方法包括:当检测到目标账号存在新发布的目标文章时,对所述目标文章进行引流标题的先验检测,得到先验检测结果,所述引流标题表征所述目标文章的文章类别;在所述先验检测结果满足预设条件时,对所述目标文章进行引流标题的后验检测,得到后验检测结果;根据所述先验检测结果和所述后验检测结果对所述目标账号进行分数评估,得到所述目标账号的评分结果;根据所述评分结果对所述目标账号进行控制。由此,可以实现对作者账号的调控机制限定,维护平台生态环境以及提高用户体验的技术效果。
-
公开(公告)号:CN116992128A
公开(公告)日:2023-11-03
申请号:CN202310761657.9
申请日:2023-06-26
申请人: 国家计算机网络与信息安全管理中心
IPC分类号: G06F16/9535 , G06F18/24 , G06Q10/0639
摘要: 本申请公开了一种检测推荐系统的推荐结果多样性的方法及设备,包括:获取所述推荐系统的推荐结果,并基于预设主题分类模型对所述推荐结果进行分类,以获得推荐内容的主题类别;确定推荐内容的主题类别中,相似的主题内容,通过预设情感立场检测模型进行情感立场检测;根据情感立场检测结果,计算考虑情感立场多样性的多样性评价指标。本申请的方法将情感立场维度的多样性融入到推荐系统多样性指标中,由此提出了一种考虑了情感立场多样性的推荐系统多样性检测方法。
-
公开(公告)号:CN116881550A
公开(公告)日:2023-10-13
申请号:CN202310764113.8
申请日:2023-06-26
申请人: 国家计算机网络与信息安全管理中心
IPC分类号: G06F16/9535 , G06F18/23213 , G06F9/445 , G06F21/56 , G06N3/04 , G06N3/08
摘要: 本申请公开了一种内容推荐系统冷启动安全风险检测方法及装置,包括:对被测推荐系统,根据所述被测推荐系统的注册规则,生成用户画像,并根据生成的用户画像、在本地系统构建相应的用户;为任一用户,基于配置的交互策略,在所述本地系统执行交互;根据交互结果构建训练数据;将训练数据输入潜在特征学习模型,执行训练;对所述待检测的内容数据,输入训练好的潜在特征学习模型;统计并逆向排序所述潜在特征学习模型的输出结果的重构误差;取排序后前指定数量的输出数据作为异常数据、进行聚类;根据聚类结果,判断内容推荐系统冷启动是否存在安全风险。本申请的方法能够用于判别被测推荐系统在冷启动阶段是否被恶意操纵。
-
公开(公告)号:CN116684127A
公开(公告)日:2023-09-01
申请号:CN202310579956.0
申请日:2023-05-23
申请人: 国家计算机网络与信息安全管理中心
摘要: 本发明公开了一种面向网络安全可解释网络数据标记方法、系统、计算设备,所述方法包括:模拟器对每一种网络攻击进行模拟,通过抓包操作获得对应的网络数据包,并在此基础上对数据进行聚类操作获得最终数据集;异常检测器对所述最终数据集的网络流量特征信息和解释器提供的部分解释结果进行统一建模,在每次与网络分析人员的交互中,确定一个可疑流量;解释器基于最大线性分离对当前所检测出可疑流量进行解释,并且向网络分析人员查询判断其是否为异常流量。本发明的优点是:充分利用解释器的计算资源,并使异常检测器可以与网络分析人员进行交互,其中通过解释器确保交互质量,最终使异常检测器模型具有适应动态网络环境的能力。
-
公开(公告)号:CN116561599A
公开(公告)日:2023-08-08
申请号:CN202310538213.9
申请日:2023-05-12
申请人: 国家计算机网络与信息安全管理中心
IPC分类号: G06F18/22 , G06F17/16 , G06F18/25 , G06N3/0464 , G06N3/084
摘要: 本发明涉及社交网络技术领域,尤其为基于少样本几何深度学习的用户重识别系统及方法,包括:生成排序模块:用于生成候选实体,并对候选实体进行相应排序;向量转化模块:用于通过图卷积的方式将待链接实体和候选实体转换成含有语义信息的向量表示;深度训练模块:用于使用几何深度学习对所有的用户属性、内容、关系进行训练;身份重识别模块:用于计算两个实体之间的相似度,进行用户身份的重识别。本发明通过使用少样本几何深度学习实现用户身份重识别,通过图卷积的方式将待链接实体和候选实体转换成含有语义信息的向量表示,生成了有用的实体嵌入,并通过深度学习网络对所有的用户属性、内容、关系进行学习输出,获得更为准确的用户身份重识别信息。
-
-
-
-
-
-
-
-
-