基于TD3多经验池强化学习的飞行器免解耦姿态控制方法

    公开(公告)号:CN115857530A

    公开(公告)日:2023-03-28

    申请号:CN202211551858.8

    申请日:2022-12-05

    Abstract: 本公开属于航天飞行器控制领域,涉及一种基于TD3多经验池强化学习的飞行器免解耦姿态控制方法,包括:建立飞行器姿态控制任务的马尔可夫过程,确定飞行任务的状态、动作和奖励;采用TD3强化学习算法对行为网络和评价网络进行训练,结合多经验池经验回放算法实现TD3算法中所有神经网络的快速收敛;将TD3算法训练好的行为网络作为神经网络控制器部署到飞行器中实现飞行器的免解耦姿态控制。通过上述算法,可以实现一个多通道免解耦的神经网络姿态控制器的训练,实现算法训练过程较快收敛,且训练出来的控制器对环境噪声及飞行器本体不确定性具有较强的适应能力。

    一种低成本类火箭可回收试验飞行器

    公开(公告)号:CN115556966A

    公开(公告)日:2023-01-03

    申请号:CN202211287350.1

    申请日:2022-10-20

    Abstract: 本发明提出了一种低成本的可回收火箭型试验飞行器,用于实现各类运载火箭回收算法、运载火箭智能控制算法的飞行试验验证。飞行器自身结构设计简单坚固易修改,采用推力可调节的航空涡喷发动机可实现火箭下落时的稳定着陆控制。飞行器通过动力系统和执行机构可实现全部六自由度的位置及姿态运动。飞行器配备的控制系统算力较强,通过箭载飞控机与算力强大的数据处理计算机配合,可实现中等规模深度学习算法IP核的搭载和多核并行算法的搭载试验。飞行器飞控软件内部设有容错制导律,可在飞行器试验算法失控时,可切换至容错制导律实现飞行器安全飞行。同时,飞行器头部的应急回收装置可保证执行机构失效时飞行器的安全着陆。

    一种基于截止频率映射的姿态控制增益整定方法

    公开(公告)号:CN115145157A

    公开(公告)日:2022-10-04

    申请号:CN202211088263.3

    申请日:2022-09-07

    Abstract: 本发明属于姿态控制技术领域,提出了一种基于截止频率映射的姿态控制增益整定方法,包括:为解决姿态控制设计对稳定性和机动性较难同时兼顾的问题,在控制方程中引入了自适应整定增益系数,同时构建了截止频率与整定增益系数的映射关系。飞行中通过实时调整控制增益,将截止频率配置到预设值并限幅,在保证控制稳定性的同时,实现了对控制机动性的在线优化。本发明对传统姿态控制设计方法进行了优化,解决了设计稳定性与机动性的矛盾,方法简洁、易操作,创新性强。

    一种在线快速求解算法的自适应控制方法

    公开(公告)号:CN112526873B

    公开(公告)日:2022-05-27

    申请号:CN202011475938.0

    申请日:2020-12-14

    Abstract: 本发明公开了一种在线快速求解算法的自适应控制方法给出了一种黎卡提代数矩阵方程的在线快速求解方法,满足控制实时性要求,同时满足解算精确性要求。对于快速时变或存在突变的线性系统,采用实时根据系统参数变化进行自适应调节的最优LQR控制器,可以提高控制系统对对象参数变化的快速适应能力,并确保其具备全局最优性,达到优化控制系统性能的目的。本发明提供的一种在线快速求解算法的自适应控制方法可用于飞行器类姿态控制系统的设计过程,也可推广应用于存在黎卡提矩阵代数方程在线求解需求的研究中,为最优控制在工程中的深入应用提供理论支撑和指导。本发明具有较好的推广性,且应用范围广泛。

    一种确定LPV变增益控制器的方法

    公开(公告)号:CN105093933A

    公开(公告)日:2015-11-25

    申请号:CN201510350229.2

    申请日:2015-06-23

    Abstract: 本发明公开了一种确定LPV变增益控制器的方法,该方法包括:根据系统建模误差和LPV参数在线测量偏差,通过模型转换得到参数不确定的LPV系统的线性系统的控制器求解问题的标准形式;将线性系统的控制器求解问题转化为求解一个线性正矩阵不等式的凸优化问题;求解所述线性正矩阵不等式,得到对应的正定参数依赖矩阵X和Y;依次计算得到控制器K1中的参数CK1,BK1,AK1;根据控制器K1中的参数,确定控制器K中的参数。通过使用本发明所提供的方法,可以设计单一的具有自调节法则的控制器,可以保证闭环系统的稳定,且具有良好的动态性能和鲁棒性。

    一种确定LPV变增益控制器的鲁棒性的方法

    公开(公告)号:CN105093932A

    公开(公告)日:2015-11-25

    申请号:CN201510350142.5

    申请日:2015-06-23

    Abstract: 本发明公开了一种确定LPV变增益控制器的鲁棒性的方法。该方法包括:根据给定的矩阵P,以及控制器K1,得到LPV系统与控制器K1所组成的闭环系统所满足的LMI不等式;对LMI不等式进行变换后,计算以τ0为中心的τ的最大值τmax;将计算τ0为中心的τ的最大值问题转化为求解相对应的优化问题;将优化问题转化为求解线性矩阵不等式的特征值的问题;求解线性矩阵不等式的特征值,并根据特征值计算得到控制器所能承受的LPV参数最大测量偏差;根据所述V参数最大测量偏差确定控制器的鲁棒性。通过使用本发明所提供的方法,可以设计出具有干扰衰减、鲁棒稳定、闭环响应满足要求的控制器,使飞行器在整个飞行过程中始终具有良好的动态性能和鲁棒性。

    飞行器姿态运动通道间气动耦合特性的交联影响确定方法

    公开(公告)号:CN104155983B

    公开(公告)日:2015-05-20

    申请号:CN201410389839.9

    申请日:2014-08-08

    Abstract: 本发明公开了一种飞行器姿态运动通道间气动耦合特性的交联影响确定方法,所述方法包括:确定所述飞行器的偏航通道的气流角;根据确定出的气流角以及耦合强度系数Sβ→γ,确定出所述偏航通道的气流角对所述滚动通道的力矩的耦合特性的交联影响;其中,Sβ→γ根据如下公式计算得到:其中,为所述飞行器的偏航通道的气流角的滚动力矩系数,为所述飞行器的滚动通道的舵面偏转角的滚动力矩系数。本发明的技术方案中,可以根据量化的偏航通道的气流角对滚动通道的力矩的交联影响,对飞行器进行补偿控制后,使得对飞行器的控制更为准确、可靠。

    一种基于滚动时域的最优跟踪制导方法

    公开(公告)号:CN115291526B

    公开(公告)日:2023-05-09

    申请号:CN202211207671.6

    申请日:2022-09-30

    Abstract: 一种基于滚动时域的最优跟踪制导方法,属于飞行器制导与控制领域,解决了解决飞行器非线性最优在线弹道跟踪问题。最优跟踪制导方法包括:基于运动学模型进行轨迹跟踪,获得状态量偏差、控制矢量偏差;利用状态量偏差、控制矢量偏差,对运动学模型线性化;基于线性化后的运动学模型,在满足终端约束的情况下,求解最优控制目标函数使其最小,即获得制导指令。本发明通过小扰动线性化处理,将轨迹跟踪问题构建为一个凸二次规划问题,以轨迹跟踪误差最小为性能质保,能够实时生成最优跟踪指令,提升轨迹跟踪精度。

Patent Agency Ranking