-
公开(公告)号:CN115209095A
公开(公告)日:2022-10-18
申请号:CN202210593745.8
申请日:2022-05-27
Applicant: 北京空间飞行器总体设计部
Abstract: 一种可多点重构的航天器可视传感网络,包括:若干微型无线相机、中央处理单元、图像解码与重建模块和视觉测量模块;若干微型无线相机分布在航天器上,构成可视传感网络;微型无线相机获取可视化遥测目标的图像信息;中央处理单元接收航天器的指令对所有微型无线相机进行指令控制,对所有成像敏感器的图像信息进行收集、存储,并将收集的图像信息发送给航天器,由航天器下传至地面;图像解码与重建模块接收航天器下传的图像,完成接收图像的解码与重建,并将数据输出给视觉测量模块;视觉测量模块布置在地面,进行可视化遥测目标的三维面形重建或位姿测量。本发明克服了现有可视化遥测系统的缺点,可用于航天器全覆盖、高精度的可视化遥测。
-
公开(公告)号:CN105891535A
公开(公告)日:2016-08-24
申请号:CN201510036002.0
申请日:2015-01-23
Applicant: 北京空间飞行器总体设计部
IPC: G01P3/68
Abstract: 本发明提出的一种用于返回式航天器的分离速度测量方法,利用单目监视相机连续成像拍摄返回式航天器与服务舱分离的图像序列,将图像序列按照从分离前至完成分离的时间先后顺序进行人工排序并进行畸变校正,通过对图像进行色彩分割、物体边缘检测、获取边缘,得到分离速度。该测量方法利用重量较轻的监视相机,实现了一种较为简便的返回式航天器在轨分离速度测量。
-
公开(公告)号:CN105890790A
公开(公告)日:2016-08-24
申请号:CN201510036075.X
申请日:2015-01-23
Applicant: 北京空间飞行器总体设计部
Abstract: 本发明提供了一种温度呈梯度式分布的防热结构测温方法,其包括:通过在测温端采用偶丝盘旋,对铠装热电偶进行改进以获得新型微型铠装热电偶;通过在新型微型铠装热电偶上涂覆高温胶,将其安装在防热结构上;将安装在防热结构的不同位置不同深度的所有新型微型铠装热电偶的甩线汇聚,统一连接至采集设备;将采集设备的采集端作为测量冷端,直接对热电偶在轨测温进行冷端补偿。综上所述,采用本发明,解决了温度呈梯度分布的防热结构不同位置不同深度的高精度、全过程测温问题、铠装热电偶在防热结构开孔尺寸要求严格、空间狭小条件下的安装问题,支持对防热结构任意深度进行热电偶温度测量,支持对防热结构任意位置布置热电偶进行温度测量。
-
公开(公告)号:CN103983253B
公开(公告)日:2015-06-10
申请号:CN201410106494.1
申请日:2014-03-21
Applicant: 北京空间飞行器总体设计部
IPC: G01C11/02
Abstract: 本发明提供一种深空探测两器互拍成像系统,该系统由地形地貌相机、相机指向机构云台、全景相机及桅杆云台组成;其中所述地形地貌相机安装于相机指向机构云台上,所述全景相机安装于桅杆云台上;所述相机指向机构云台安装于着陆器上,且其偏航角的范围为-175°~+175°,俯仰角范围为-60°~+60°;所述桅杆云台安装于巡视器上,且其偏航角范围为-178.5°~+178.5°,俯仰角范围为-60°~+90°。本发明在两器上各安装1台相机与其机构运动部件配合工作,分别对两器进行静态拍照,还对巡视器在月面移动状态进行跟拍,减少了成像系统配置相机的数量。
-
公开(公告)号:CN103942363A
公开(公告)日:2014-07-23
申请号:CN201410106464.0
申请日:2014-03-21
Applicant: 北京空间飞行器总体设计部
IPC: G06F17/50
Abstract: 本发明提供一种深空探测器光学载荷配置方法,具体步骤如下:创建探测器单元;创建星体表面环境单元;创建动态光照单元;创建光学载荷可视化单元:在光学载荷成像模型中,载入探测器单元、星体表面环境单元及动态光照单元,通过对探测器的位置姿态、星体表面环境参数、光照参数、光学载荷成像属性交互式动态设置和调整,获得不同工况下光学载荷成像效果的图像或视频,同时跟踪光学载荷视场遮挡情况和探测器星体表面阴影状态,从而获取最优光学载荷成像属性,并利用其进行光学载荷配置。本发明对不同工况下的图像或视频进行判断,从而使得配置的光学载荷满足在不同工况下的要求。
-
-
-
-