-
公开(公告)号:CN119047530A
公开(公告)日:2024-11-29
申请号:CN202410944113.0
申请日:2024-07-15
Applicant: 北京交通大学
Abstract: 本发明提供了一种基于直接反馈对齐机制的图神经网络优化方法。该方法包括:获取初始图数据,将初始图数据输入到待优化的图神经网络模型中,通过前向传播算法得到节点的预测值;对于有标签节点,根据其预测值与真值得到每一个有标签节点的误差;利用伪误差生成器为每个无标签节点生成伪误差;根据有标签节点的误差以及筛选出的伪标签节点的伪误差应用反馈对齐机制同步更新图神经网络模型的每一层网络的参数;根据损失值是否收敛判断图神经网络参数是否收敛;若图神经网络参数收敛,则训练完成,输出优化后的图神经网络模型。本发明方法同时能够处理半监督学习环境中的标签稀缺问题。可以应用于引文网络分类,互联网网页分类等图数据挖掘任务中。
-
公开(公告)号:CN114140826B
公开(公告)日:2024-05-31
申请号:CN202111468443.X
申请日:2021-12-03
Applicant: 北京交通大学
IPC: G06V40/10 , G06V10/32 , G06V10/44 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/084
Abstract: 本发明提供了一种基于相机特征分离的目标重识别方法,包括如下步骤:步骤1:对数据进行预处理;步骤2:通过编码器提取样本特征,基于特征聚类生成伪标签;步骤3:基于注意力模块分离Feature Map;步骤4:向前传播得到目标和相机分类结果;步骤5:计算损失函数;步骤6:对模型进行优化计算;步骤7:得到测试模型的效果;步骤8:得到无监督目标重识别的解决方案;本申请相比于现有的消除相机影响的无监督目标重识别方法,用注意力模块直接分离相机特征更加直接,比二阶段方法更加简单;基于类别下相机中心的四元中心损失可以避免基于样本的度量损失的训练过程不稳定的现象。
-
公开(公告)号:CN111814584B
公开(公告)日:2024-03-12
申请号:CN202010560236.6
申请日:2020-06-18
Applicant: 北京交通大学
IPC: G06V20/56 , G06V10/40 , G06V10/774 , G06V10/82 , G06N3/08 , G06N3/0464
Abstract: 本发明提供了一种基于多中心度量损失的多视角环境下车辆重识别方法。该方法包括:获取包含车辆身份标签的车辆样本图像,经过空间变换网络对图像进行仿射变换后,将图像经过深度卷积神经网络进行特征提取,得到图像的特征向量;根据图像的特征向量分别计算出分类任务损失和多中心度量学习损失并相加,得到综合损失的值;根据综合损失的值计算深度卷积神经网络的参数和视角中心向量的梯度,得到训练好的深度卷积神经网络模型;利用训练好的深度卷积神经网络模型对车辆图像进行特征提取和身份识别处理。本发明使用空间变换网络对图像进行仿射变换,采用K‑means聚类的方法的估计视角信息,可以增加车辆视角估计的准确性,提高车辆重识别的准确率。
-
公开(公告)号:CN111581468B
公开(公告)日:2024-03-01
申请号:CN202010412161.7
申请日:2020-05-15
Applicant: 北京交通大学
IPC: G06F16/906 , G06N20/00
Abstract: 本发明提供了一种基于噪声容忍的偏多标记学习方法。该方法包括构建训练数据的特征矩阵X、可观测标签矩阵Y和特征填充矩阵E;根据特征矩阵X、可观测标签矩阵Y和特征填充矩阵E挖掘特征空间和标记空间一致性信息,构建基于噪声的偏多标记学习模型,通过选择迭代优化方法对偏多标记学习模型进行训练,得到多标签分类器V;将未知样本输入到多标签分类器V,多标签分类器V输出所述未知样本的标签信息。本发明提出的基于噪声容忍的偏标记学习方法,该方法不进行标记消歧,而是补充样本缺失的特征信息,达到噪声标记能够参与模型训练过程的目的。该算法充分利用缺失特征信息的低秩性,辅助算法学习更鲁棒的分类模型,实现对未知样本的准确分类。
-
公开(公告)号:CN113870160B
公开(公告)日:2024-02-27
申请号:CN202111060998.0
申请日:2021-09-10
Applicant: 北京交通大学
IPC: G06T5/50 , G06T5/60 , G06T17/00 , G06N3/0464 , G06N3/084
Abstract: 本发明提供了一种基于变换器神经网络的点云数据处理方法。该方法包括:构建三维物体对称检测模型,通过检测物体对称面/轴获取输入的点云数据的对称点,将点云数据的投影平面转换为对称结构的旋转平移操作,得到多组数据据增强后的点云图数据;通过变换器网络模型提取多组数据据增强后的点云图数据的全局特征信息和局部特征信息,得到下采样后的点云数据;结合不同的目标任务需求,构建任务驱动的任务网络模型,将下采样后的点云数据输入到任务网络模型,得到目标任务结果。本发明有效结合三维物体对称检测模型与变换器网络模型,能够在提高下采样模型鲁棒性的同时,进而具有最小化目标任务精度损失的能力,提升下采样规模
-
公开(公告)号:CN110530369B
公开(公告)日:2020-11-10
申请号:CN201910779178.3
申请日:2019-08-22
Applicant: 北京交通大学
IPC: G01C21/20
Abstract: 本发明提供了一种基于时间窗的AGV任务调度方法。该方法包括:根据执行任务的AGV进入路径的时间、驶出路径的时间和任务需要经过的所有路径的长度,确定任务需要经过的所有路径的时间窗;基于任务需要经过的所有路径的时间窗和任务的初始优先级,计算出各个任务的动态优先级;根据各个任务的动态优先级利用任务调度策略对各个任务进行调度。本发明把AGV之间的避碰和冲突死锁问题的解决作为研究的重点,以图论模型以及单AGV路径规划算法为基础,针对多AGV系统中可能出现的问题,通过应用合适的多AGV路径规划算法,解决多AGV系统的避碰和冲突死锁问题,为每个AGV规划出无冲突的路径。
-
公开(公告)号:CN111581469A
公开(公告)日:2020-08-25
申请号:CN202010412162.1
申请日:2020-05-15
Applicant: 北京交通大学
IPC: G06F16/906 , G06N20/00
Abstract: 本发明提供了一种基于多子空间表示的偏多标记学习方法。该方法包括利用真实标记矩阵构建标记子空间,利用特征映射矩阵构建特征子空间,通过标记子空间和特征子空间学习得到基于多子空间表示的偏多标记学习模型;对基于多子空间表示的偏多标记学习模型进行交替优化训练学习,求解基于多子空间表示的偏多标记学习模型,得到最优的预测模型;将未知样本输入到最优的预测模型,最优的预测模型输出未知样本的标记信息。本发明解决了特征存在噪声和冗余标记的问题,使用映射矩阵将特征空间映射到子空间,减少特征噪声对预测模型的影响;使用矩阵分解技术将标记空间降维到标记子空间,使用图拉普拉斯约束标记子空间,消除冗余标记噪声对预测模型的影响。
-
公开(公告)号:CN108647705A
公开(公告)日:2018-10-12
申请号:CN201810368937.2
申请日:2018-04-23
Applicant: 北京交通大学
Abstract: 本发明提供了一种基于图像和文本语义相似度的图像语义消歧方法和装置。该方法包括:将一个多义词的一个意思用一个均值向量表示,使用图像显著性标签对待处理图像进行标注,得到待处理图像的标签,将待处理图像的标签和图像内容转换成向量的形式,得到待处理图像的融合向量;使用余弦相似度分别计算出待处理图像的融合向量与每个均值向量之间的相似度,找出相似度最大的均值向量,将该相似性最高的均值向量对应的意思确定为待处理图像的正确解释。本发明采用图像、文本结合的方法,将图像转换为向量,解决了图像翻译和图像查询歧义的问题,并开创性地实现了有效消除图像歧义性。大大提高了图像查询和解释的准确性,降低了图像解释的错误率。
-
公开(公告)号:CN118968495A
公开(公告)日:2024-11-15
申请号:CN202410966710.3
申请日:2024-07-18
Applicant: 北京交通大学
IPC: G06V20/64 , G06V10/26 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明提供了一种面向动态环境的三维场景生成方法。该方法包括:将动态环境的场景数据转换成视频图像序列;将视频图像序列中的原始视频图像输入至YOLOv8模型,利用YOLOv8模型对图像中动态目标进行检测和操作,得到目标掩码;将原始视频图像和分割得到的目标掩码输入到稳定扩散模型中得到修复后的图像;使用RAFT算法计算深度图中连续帧之间的光流,生成光流信息;使用DPT模型对光流和深度信息进行几何引导生成深度图,根据深度图生成三维场景。本发明能快速识别并移除动态目标,使用文本指导修复技术恢复背景,确保图像的视觉连贯性和自然度。
-
公开(公告)号:CN111581466B
公开(公告)日:2024-02-27
申请号:CN202010411580.9
申请日:2020-05-15
Applicant: 北京交通大学
IPC: G06F16/906 , G06N20/00
Abstract: 本发明提供了一种特征信息存在噪声的偏多标记学习方法。该方法包括:构建包含噪声的观测的特征信息矩阵,构建标签置信度矩阵;利用低秩稀疏表示模型将特征信息矩阵分解为稀疏噪声矩阵和正确的特征信息矩阵,利用稀疏噪声矩阵、正确的特征信息矩阵和观测的特征信息矩阵构建多标记预测模型;利用标签置信度矩阵对多标记预测模型进行优化,得到构建嵌入了特征信息和标签置信度的混合模型,对混合模型进行训练得到偏多标签学习模型;利用偏多标签学习模型对未见示例预测出未见示例对应的标签。本发明的方法利用低秩和稀疏分解模型准确地恢复正确的特征信息,有效地减少噪声特征信息的影响;将样本相似性和标签置信度结合,进一步提升标签置信度的准确性。
-
-
-
-
-
-
-
-
-