-
公开(公告)号:CN112800876B
公开(公告)日:2023-11-10
申请号:CN202110050152.2
申请日:2021-01-14
Applicant: 北京交通大学
IPC: G06V40/10 , G06V10/25 , G06V10/82 , G06N3/0464 , G06N3/048
Abstract: 本发明实施例提供了一种用于重识别的超球面特征嵌入方法,包括以下步骤:图像预处理阶段:从数据集中读取目标样本图像,对图像进行预处理;特征提取阶段:将预处理后的图像输入到深度网络模型提取图像的特征映射并结合注意力机制的全局池化操作得到特征向量;损失计算及训练优化阶段:根据所述特征向量和目标ID标签分别计算三种损失函数损失的值,根据损失的值计算深度卷积神经网络参数的梯度对模型进行优化;测试评估阶段:对训练完成的深度网络模型进行测试并根据测试结果调整超参数。本发明还提供了一种用于重识别的超球面特征嵌入系统,包括:图像预处理模块、特征提取模块、超球面特征嵌入模块和测试模块。
-
公开(公告)号:CN111814584B
公开(公告)日:2024-03-12
申请号:CN202010560236.6
申请日:2020-06-18
Applicant: 北京交通大学
IPC: G06V20/56 , G06V10/40 , G06V10/774 , G06V10/82 , G06N3/08 , G06N3/0464
Abstract: 本发明提供了一种基于多中心度量损失的多视角环境下车辆重识别方法。该方法包括:获取包含车辆身份标签的车辆样本图像,经过空间变换网络对图像进行仿射变换后,将图像经过深度卷积神经网络进行特征提取,得到图像的特征向量;根据图像的特征向量分别计算出分类任务损失和多中心度量学习损失并相加,得到综合损失的值;根据综合损失的值计算深度卷积神经网络的参数和视角中心向量的梯度,得到训练好的深度卷积神经网络模型;利用训练好的深度卷积神经网络模型对车辆图像进行特征提取和身份识别处理。本发明使用空间变换网络对图像进行仿射变换,采用K‑means聚类的方法的估计视角信息,可以增加车辆视角估计的准确性,提高车辆重识别的准确率。
-
公开(公告)号:CN111968058B
公开(公告)日:2023-08-04
申请号:CN202010863754.5
申请日:2020-08-25
Applicant: 北京交通大学
IPC: G06T5/00 , G06T7/13 , G06V10/80 , G06N3/0464 , G06N3/084
Abstract: 本发明提供了一种低剂量CT图像降噪方法,包括:获取训练数据集;建立降噪网络模型,包括自适应边缘特征提取模块用于对输入的训练数据集中低剂量CT图像进行边缘特征的提取;第一融合层对自适应边缘特征提取模块的输出信号和输入信号进行融合;卷积模块包括多层卷积层构成的编码器、多层返卷积层构成的解码器以及第二融合层,编码器对第一融合层的输出信号进行编码,第二融合层使用跳跃的方式将解码器的反卷积层的特征图与其在编码器中对称的卷积层的特征图进行融合,输出降噪后的特征图;对降噪网络模型进行训练、测试;采用测试好的降噪网络模型对低剂量CT图像降噪。本方法能够保留更多细粒度的信息,得到更加接近目标图像的降噪结果。
-
公开(公告)号:CN111814584A
公开(公告)日:2020-10-23
申请号:CN202010560236.6
申请日:2020-06-18
Applicant: 北京交通大学
Abstract: 本发明提供了一种基于多中心度量损失的多视角环境下车辆重识别方法。该方法包括:获取包含车辆身份标签的车辆样本图像,经过空间变换网络对图像进行仿射变换后,将图像经过深度卷积神经网络进行特征提取,得到图像的特征向量;根据图像的特征向量分别计算出分类任务损失和多中心度量学习损失并相加,得到综合损失的值;根据综合损失的值计算深度卷积神经网络的参数和视角中心向量的梯度,得到训练好的深度卷积神经网络模型;利用训练好的深度卷积神经网络模型对车辆图像进行特征提取和身份识别处理。本发明使用空间变换网络对图像进行仿射变换,采用K-means聚类的方法的估计视角信息,可以增加车辆视角估计的准确性,提高车辆重识别的准确率。
-
公开(公告)号:CN112800876A
公开(公告)日:2021-05-14
申请号:CN202110050152.2
申请日:2021-01-14
Applicant: 北京交通大学
Abstract: 本发明实施例提供了一种用于重识别的超球面特征嵌入方法,包括以下步骤:图像预处理阶段:从数据集中读取目标样本图像,对图像进行预处理;特征提取阶段:将预处理后的图像输入到深度网络模型提取图像的特征映射并结合注意力机制的全局池化操作得到特征向量;损失计算及训练优化阶段:根据所述特征向量和目标ID标签分别计算三种损失函数损失的值,根据损失的值计算深度卷积神经网络参数的梯度对模型进行优化;测试评估阶段:对训练完成的深度网络模型进行测试并根据测试结果调整超参数。本发明还提供了一种用于重识别的超球面特征嵌入系统,包括:图像预处理模块、特征提取模块、超球面特征嵌入模块和测试模块。
-
公开(公告)号:CN111968058A
公开(公告)日:2020-11-20
申请号:CN202010863754.5
申请日:2020-08-25
Applicant: 北京交通大学
Abstract: 本发明提供了一种低剂量CT图像降噪方法,包括:获取训练数据集;建立降噪网络模型,包括自适应边缘特征提取模块用于对输入的训练数据集中低剂量CT图像进行边缘特征的提取;第一融合层对自适应边缘特征提取模块的输出信号和输入信号进行融合;卷积模块包括多层卷积层构成的编码器、多层返卷积层构成的解码器以及第二融合层,编码器对第一融合层的输出信号进行编码,第二融合层使用跳跃的方式将解码器的反卷积层的特征图与其在编码器中对称的卷积层的特征图进行融合,输出降噪后的特征图;对降噪网络模型进行训练、测试;采用测试好的降噪网络模型对低剂量CT图像降噪。本方法能够保留更多细粒度的信息,得到更加接近目标图像的降噪结果。
-
-
-
-
-