基于人体拓扑结构对齐的多人姿态估计方法

    公开(公告)号:CN112801138B

    公开(公告)日:2024-04-09

    申请号:CN202110009492.0

    申请日:2021-01-05

    Abstract: 本发明提供了一种基于人体拓扑结构对齐的多人姿态估计方法。该方法包括:用MS‑COCO和MPLL数据集为输入训练HRNet网络,得到XZZNet网络;利用HRNet网络对数据集的图像样本进行学习得到人体关键点图像;将SZF数据集输入到XZZNet网络中,生成候选的没有袖子的人体姿态关键点;对HRNet网络生成的人体关键点图和XZZNet生成的候选的人体关键点图进行图匹配,利用交叉熵损失函数微调XZZNet网络,得到优化的XZZNet网络;将SZF数据集输入到优化的XZZNet网络中,生成SZF数据集中的图像对应的关键点检测图像,根据关键点检测图像得到图像中包含人体的各个关键点姿态信息。本发明在没有标记或者稀疏标记的图像中可以显著提高目标域的性能,在无监督网络学习框架下可以准确地区分图像中人体的各个关键点。

    基于图卷积神经网络的车辆重识别方法

    公开(公告)号:CN112396027B

    公开(公告)日:2023-09-19

    申请号:CN202011384258.8

    申请日:2020-12-01

    Abstract: 本发明提供了一种基于图卷积神经网络的车辆重识别方法。包括:构建用于车辆重识别的网络模型,使用卷积神经网络提取待重识别的车辆图像的全局和局部特征,利用图卷积神经网络得到结构化特征,利用结构化特征计算网络模型的损失函数;根据损失函数训练网络模型,将待重识别的车辆图像和测试集的所有图像输入到训练好的网络模型中,分别得到待测图片和测试集的所有图像的图片特征,根据图片特征计算出待测图片和测试集的各个图像之间的相似性,根据相似性得到待重识别的车辆图像的重识别结果。本发明通过使用图卷积神经网络挖掘局部特征与局部特征、局部特征与全局特征之间的结构化信息,从而获得更优更全面的特征表达,提高了车辆重识别的精度。

    基于图卷积神经网络的车辆重识别方法

    公开(公告)号:CN112396027A

    公开(公告)日:2021-02-23

    申请号:CN202011384258.8

    申请日:2020-12-01

    Abstract: 本发明提供了一种基于图卷积神经网络的车辆重识别方法。包括:构建用于车辆重识别的网络模型,使用卷积神经网络提取待重识别的车辆图像的全局和局部特征,利用图卷积神经网络得到结构化特征,利用结构化特征计算网络模型的损失函数;根据损失函数训练网络模型,将待重识别的车辆图像和测试集的所有图像输入到训练好的网络模型中,分别得到待测图片和测试集的所有图像的图片特征,根据图片特征计算出待测图片和测试集的各个图像之间的相似性,根据相似性得到待重识别的车辆图像的重识别结果。本发明通过使用图卷积神经网络挖掘局部特征与局部特征、局部特征与全局特征之间的结构化信息,从而获得更优更全面的特征表达,提高了车辆重识别的精度。

    基于显著性场景图分析的文本合成图像方法及系统

    公开(公告)号:CN112734881A

    公开(公告)日:2021-04-30

    申请号:CN202011381287.9

    申请日:2020-12-01

    Abstract: 本发明提供了一种基于显著性场景图分析的文本合成图像方法及系统。该方法包括:根据依赖关系解析将文本描述构建成依赖树,进行树转换以得到语义图,构建一个基于规则的场景图解析器,该解析器从依赖项语法表示映射到场景图;利用背景检索模块对场景图进行检索,得到与给定场景图最相关的候选分割图;通过背景融合模块对候选分割图进行编码得到背景特征;将前景对象和背景特征表示都输入到生成对抗网络中,得到文本合成图像模型,使用模型以测试文本描述为输入,生成具有前景和背景视觉上一致的高分辨率图像。本发明将基于显著性的场景图引入到图像合成中,通过探索跨模态文本语义空间配置,有效的提高了图像合成的准确率。

    基于图像和文本语义相似度的图像语义消歧方法和装置

    公开(公告)号:CN108647705B

    公开(公告)日:2019-04-05

    申请号:CN201810368937.2

    申请日:2018-04-23

    Abstract: 本发明提供了一种基于图像和文本语义相似度的图像语义消歧方法和装置。该方法包括:将一个多义词的一个意思用一个均值向量表示,使用图像显著性标签对待处理图像进行标注,得到待处理图像的标签,将待处理图像的标签和图像内容转换成向量的形式,得到待处理图像的融合向量;使用余弦相似度分别计算出待处理图像的融合向量与每个均值向量之间的相似度,找出相似度最大的均值向量,将该相似性最高的均值向量对应的意思确定为待处理图像的正确解释。本发明采用图像、文本结合的方法,将图像转换为向量,解决了图像翻译和图像查询歧义的问题,并开创性地实现了有效消除图像歧义性。大大提高了图像查询和解释的准确性,降低了图像解释的错误率。

    基于人体拓扑结构对齐的多人姿态估计方法

    公开(公告)号:CN112801138A

    公开(公告)日:2021-05-14

    申请号:CN202110009492.0

    申请日:2021-01-05

    Abstract: 本发明提供了一种基于人体拓扑结构对齐的多人姿态估计方法。该方法包括:用MS‑COCO和MPLL数据集为输入训练HRNet网络,得到XZZNet网络;利用HRNet网络对数据集的图像样本进行学习得到人体关键点图像;将SZF数据集输入到XZZNet网络中,生成候选的没有袖子的人体姿态关键点;对HRNet网络生成的人体关键点图和XZZNet生成的候选的人体关键点图进行图匹配,利用交叉熵损失函数微调XZZNet网络,得到优化的XZZNet网络;将SZF数据集输入到优化的XZZNet网络中,生成SZF数据集中的图像对应的关键点检测图像,根据关键点检测图像得到图像中包含人体的各个关键点姿态信息。本发明在没有标记或者稀疏标记的图像中可以显著提高目标域的性能,在无监督网络学习框架下可以准确地区分图像中人体的各个关键点。

    基于图像和文本语义相似度的图像语义消歧方法和装置

    公开(公告)号:CN108647705A

    公开(公告)日:2018-10-12

    申请号:CN201810368937.2

    申请日:2018-04-23

    Abstract: 本发明提供了一种基于图像和文本语义相似度的图像语义消歧方法和装置。该方法包括:将一个多义词的一个意思用一个均值向量表示,使用图像显著性标签对待处理图像进行标注,得到待处理图像的标签,将待处理图像的标签和图像内容转换成向量的形式,得到待处理图像的融合向量;使用余弦相似度分别计算出待处理图像的融合向量与每个均值向量之间的相似度,找出相似度最大的均值向量,将该相似性最高的均值向量对应的意思确定为待处理图像的正确解释。本发明采用图像、文本结合的方法,将图像转换为向量,解决了图像翻译和图像查询歧义的问题,并开创性地实现了有效消除图像歧义性。大大提高了图像查询和解释的准确性,降低了图像解释的错误率。

    基于显著性场景图分析的文本合成图像方法及系统

    公开(公告)号:CN112734881B

    公开(公告)日:2023-09-22

    申请号:CN202011381287.9

    申请日:2020-12-01

    Abstract: 本发明提供了一种基于显著性场景图分析的文本合成图像方法及系统。该方法包括:根据依赖关系解析将文本描述构建成依赖树,进行树转换以得到语义图,构建一个基于规则的场景图解析器,该解析器从依赖项语法表示映射到场景图;利用背景检索模块对场景图进行检索,得到与给定场景图最相关的候选分割图;通过背景融合模块对候选分割图进行编码得到背景特征;将前景对象和背景特征表示都输入到生成对抗网络中,得到文本合成图像模型,使用模型以测试文本描述为输入,生成具有前景和背景视觉上一致的高分辨率图像。本发明将基于显著性的场景图引入到图像合成中,通过探索跨模态文本语义空间配置,有效的提高了图像合成的准确率。

Patent Agency Ranking