一种基于自注意力的观点及其持有者的联合抽取方法

    公开(公告)号:CN108628828A

    公开(公告)日:2018-10-09

    申请号:CN201810347840.3

    申请日:2018-04-18

    Abstract: 本发明一种基于自注意力的观点及其持有者的联合抽取方法:S1.构建提取观点及其持有者的语料集;S2.识别包含观点的语句;S3.联合抽取观点及其持有者。本发明优点:1、文本分类模型避免了抽取出的句子不包含观点的情况;2、观点及其持有者联合抽取模型摆脱了词性标注、命名实体识别和句法依存分析等自然语言处理环节,避免这些环节出现误差对模型提取效果的影响,且该模型有很高灵活度和覆盖面;3、本发明包含构建提取观点及其持有者的语料集,识别包含观点的语句,联合抽取观点及其持有者。4、本发明在双向LSTM的基础上使用self-attention有效结合两者优点,使词语序列的表示语义更丰富,训练的模型准确率更高。

    一种微博转发树和转发森林构建方法

    公开(公告)号:CN104778210B

    公开(公告)日:2018-04-27

    申请号:CN201510111754.9

    申请日:2015-03-13

    Abstract: 本发明公开了一种微博转发树和转发森林构建方法,属于数据挖掘领域,包括以下步骤:收集该条微博的原创微博信息;并且根据单条原创微博信息,获取其转发微博信息;然后在单条原创微博信息及其所有转发微博信息上,构造单条微博的微博树结构;根据用户给定时间段t3‑t4内的话题关键词Topic,收集与该话题相关的全量微博信息,针对每一条微博信息,构造单条微博的微博树结构;最后汇总该话题相关的全量微博信息的转发树;形成微博转发森林。本发明的优点为:通过转发树生成算法,高效快速完整地进行转发树和转发森林的提取,具有较高的效率和效果。

    微信公众号的影响力分析方法和系统

    公开(公告)号:CN106909637A

    公开(公告)日:2017-06-30

    申请号:CN201710079050.7

    申请日:2017-02-14

    CPC classification number: G06F17/30861 G06F17/3061

    Abstract: 本发明公开了一种微信公众号的影响力分析方法,包括如下步骤:步骤一、采集某一微信公众号下设定时间内发布的m篇文章中每篇文章的阅读数αi和点赞数βi,并计算阅读数和点赞数的转化率k=阅读总数/点赞总数;步骤二、当微信公众号下某篇文章的阅读数为100000+时,利用αx=k*βx计算得到文章的阅读数,其中αx为篇文章阅读数,βx为文章点赞数,设置单篇文章阅读数1×107为上限;步骤三、依据如下公式计算微信公众号的影响力权重:η为微信公众号的权威性权重;以用于对微信公众号发布信息的管理及对微信公众号的影响力的分析。本发明还公开了一种微信公众号的影响力分析系统。本发明极大地节省了人工成本,大幅度提高公众号影响力的分析效率。

    一种基于马尔可夫聚类的实体间关系消解方法

    公开(公告)号:CN105893481A

    公开(公告)日:2016-08-24

    申请号:CN201610187149.4

    申请日:2016-03-29

    Abstract: 本发明提供一种基于马尔可夫聚类的实体间关系消解方法,包括:计算K个实体中任意两个实体之间的语义相似度;根据实体间的语义相似度构造赋权图G;构造状态转移矩阵M;在状态转移矩阵M上执行马尔科夫聚类算法,得到多个关系簇;其中,每个簇代表一系列语义相近似的实体。本发明提供的基于马尔可夫聚类的实体间关系消解方法具有以下优点:提出了融合词法和语义的相似度计算方法,然后给出了基于马尔科夫图聚类的关系聚类方法。该方法与层次聚类方法相比,聚类纯度指标有了一定提高,还具有计算过程简单快速的优点。

    针对特定领域的新词发现方法

    公开(公告)号:CN105760366A

    公开(公告)日:2016-07-13

    申请号:CN201610150038.6

    申请日:2016-03-16

    CPC classification number: G06F17/2715 G06F17/277

    Abstract: 本发明提供一种针对特定领域的新词发现方法,包括以下步骤:步骤1,文档预处理;步骤2,构建候选新词集;其中,每个候选新词由词语、该词语距离所述中心词语的距离向量值以及所述中心词语均采用新词表述方式表达。步骤3,候选新词挖掘;优点为:针对特定领域的新词发现方法,采用更灵活的新词表达方式,将数据挖掘领域的关联规则方法引入新词发现过程,并创新地提出将词汇与指定关键词的距离向量作为关联规则挖掘的重要特征,由此可快速准确全面的识别出文档包含的所有新词。

Patent Agency Ranking