一种利用Ti插入层制作NiSiGe材料的方法

    公开(公告)号:CN104752182A

    公开(公告)日:2015-07-01

    申请号:CN201310746120.1

    申请日:2013-12-30

    Abstract: 本发明提供一种利用Ti插入层制作NiSiGe材料的方法,至少包括以下步骤:1)提供一Si1-xGex层,于所述Si1-xGex层表面形成Ti金属薄膜,其中,0.05≤x≤0.9;2)于所述Ti掺入层表面形成Ni金属层;3)采用快速退火工艺使所述Ni金属穿过所述Ti金属薄膜与所述Si1-xGex层反应生成NiSi1-xGex层,其中,0.05≤x≤0.9。本发明具有以下有益效果:由于特定温度可以提供Ni与Si1-xGex层反应所需的热激活能,并使只有极少量的Ti与Si1-xGex反应并保持在Si1-xGex层与NiSi1-xGex层的界面处,产生几个原子层的缺陷聚集区,隔断了表层薄膜应力的释放向底层的传递,同时使Ni与Si1-xGex的反应以较缓慢的速度进行。因此,本发明对于保持Si1-xGex的应变起到了一定的作用,可以获得连续、均一、稳定的NiSiGe材料。

    一种制备直接带隙Ge薄膜的方法

    公开(公告)号:CN103065938B

    公开(公告)日:2015-06-10

    申请号:CN201210593808.6

    申请日:2012-12-31

    Abstract: 本发明涉及一种制备直接带隙Ge薄膜的方法,包括提供一GeOI衬底;对所述顶层锗纳米薄膜进行图形化处理,开出若干与底部所述埋氧层贯通的腐蚀窗口;湿法腐蚀直至埋氧层被彻底腐蚀掉,使得所述图形化的顶层锗纳米薄膜与硅衬底虚接触;提供一PDMS载体,所述PDMS载体与所述顶层锗纳米薄膜紧密接触,从而将与硅衬底虚接触的顶层锗纳米薄膜转移到PDMS载体上;将该PDMS载体两端夹紧,并反向施加机械拉伸使得顶层锗纳米薄膜随着PDMS载体的拉伸而形变,在其内部产生张应变。采用本发明的方法制备的直接带隙Ge薄膜应变大小可控,可用于光电器件;其具有低缺陷、低位错密度的特点;通过机械拉伸制备直接带隙Ge纳米薄膜的方法工艺简单,成本较低。

    一种绝缘体上半导体及其制备方法

    公开(公告)号:CN102683178B

    公开(公告)日:2014-11-12

    申请号:CN201210175117.4

    申请日:2012-05-31

    Abstract: 本发明提供一种绝缘体上半导体及其制备方法,先在第一Si衬底上的第一SiO2层刻出多个孔道,然后选择性外延Ge、SixGeyCzSn1-x-y-z、III-V族等半导体材料,填充所述孔道并形成半导体层,以获得性能优异的半导体层,在所述半导体层表面键合具有第二SiO2层的第二Si衬底,然后去除所述Si衬底并去除所述SiO2,接着填充PMMA,并在所得结构的下表面键合具有第三SiO2层的第三Si衬底,退火使PMMA膨胀以剥离上述结构,该剥离工艺简单,有利于节约成本,最后进行抛光以完成所述绝缘体上半导体的制备。本发明与现有的半导体技术兼容;通过选择性外延可降低半导体层的缺陷,有利于绝缘体上半导体性能的提高;通过PMMA退火膨胀剥离的工艺简单,有利于节约成本。本发明适用于工业生产。

    利用锗浓缩技术制备SiGe或Ge纳米线的方法

    公开(公告)号:CN102751232B

    公开(公告)日:2014-07-30

    申请号:CN201210225391.8

    申请日:2012-07-02

    Abstract: 本发明提供一种利用锗浓缩技术制备SiGe或Ge纳米线的方法,该方法通过将图形化和锗浓缩的方法相结合,获得一种保证产量和质量的SiGe和Ge纳米线的可控生长。本发明可以获得均匀而笔直的Ge或SiGe纳米线阵列,并且通过对氧化时间的控制可以获得不同组分的SiGe纳米线、以及Ge纳米线,最终形成的纳米线长度可达几百微米,直径达到几十纳米,通过图形的设计为之后纳米线器件打下基础。

    锗衬底的生长方法以及锗衬底

    公开(公告)号:CN102383192B

    公开(公告)日:2014-06-18

    申请号:CN201110215672.0

    申请日:2011-07-29

    Abstract: 本发明提供了一种锗衬底的生长方法,包括如下步骤:提供支撑衬底,所述支撑衬底为晶体材料;在支撑衬底表面采用第一温度外延生长第一锗晶体层;在第一锗晶体层表面采用第二温度外延生长第二锗晶体层,所述第一温度低于第二温度。本发明的优点在于提出了一种低高温锗外延结合的生长工艺,首先低温生长一层锗层,锗外延生长速度低,具有二维生长特性且完全弛豫,这层薄的低温锗层具有较多的缺陷,易于应力驰豫以及位错湮灭,随后,再高温生长一层锗外延层,该层生长速度快,能够得到具有高晶体质量且完全驰豫的单晶锗层。

    一种选择性刻蚀制备全隔离混合晶向SOI的方法

    公开(公告)号:CN102790005B

    公开(公告)日:2014-04-09

    申请号:CN201110125592.6

    申请日:2011-05-16

    Abstract: 本发明公开了一种选择性刻蚀制备全隔离混合晶向SOI的方法,以及基于该方法的CMOS集成电路制备方法。本发明提出的制备方法,采用SiGe层作为第一晶向外延的虚拟衬底层,从而可以形成第一晶向的顶层应变硅;采用从窗口直接外延覆盖至第一硬掩膜表面的Si作为连接窗口内第一晶向的应变硅与窗口外顶层硅的支撑,从而可去除第一晶向顶层应变硅下方的SiGe层,填充绝缘材料形成绝缘埋层,且还可以防止顶层硅有应变存在时的应变弛豫。该方法形成的顶层硅和绝缘埋层厚度均匀、可控,窗口内形成的应变硅与窗口外的顶层硅具有不同晶向,可分别为NMOS及PMOS提供更高的迁移率,从而提升了CMOS集成电路的性能。

Patent Agency Ranking