一种室温强塑性与高温强度相匹配的间隙强化钛基复合材料及其制备方法

    公开(公告)号:CN119979944A

    公开(公告)日:2025-05-13

    申请号:CN202510177653.5

    申请日:2025-02-18

    Abstract: 本发明涉及一种室温强塑性与高温强度相匹配的间隙强化钛基复合材料及其制备方法,属于钛基复合材料技术领域。为解决现有将间隙元素引入钛基复合材料的方法难以实现间隙元素均匀分布的问题,本发明首先将间隙元素添加物粉末、增强相反应物粉末和钛合金基体粉末混合球磨得到原料粉末,通过热压烧结或热等静压将原料粉末制成原料棒材,通过等离子旋转电极雾化制粉将原料棒材制成间隙元素强化钛基复合粉末;最后将所得钛基复合粉末进行热压烧结或热等静压得到间隙强化钛基复合材料。本发明在钛基复合粉末中原位引入间隙元素,实现了对间隙元素含量和分布的精确调控,所得系列钛基复合材料在室温下具有良好的强塑性匹配,高温强度也有较大提升。

    一种高强高导热镁合金板材及其制备方法

    公开(公告)号:CN119351842A

    公开(公告)日:2025-01-24

    申请号:CN202411476328.0

    申请日:2024-10-22

    Abstract: 一种高强高导热镁合金板材及其制备方法,涉及一种高强高导热轧制镁合金及其制备方法。本发明镁合金包括以下质量百分含量的各组分为:1.0%~7.0%的元素Zn、0.2%‑2.0%的元素Mn和1.5%~7.0%的元素X,元素X为钇、钆、钕或铒中的一种或两种以上,余量为Mg。本发明通过纯Mg锭、Mg‑Zn中间合金、Mg‑Mn中间合金和Mg‑X中间合金为原料,熔炼成高质量铸锭,经过均匀化热处理和热轧制变形即得到高强高导热镁合金板材。本发明制备的轧制镁合金拉伸屈服强度可达340~370MPa,抗拉强度为360~400MPa,延伸率5%~10%,室温热导率为130~140W/(m·K),同时具有优异的力学性能和导热性能,可作为航空航天、卫星雷达天线等电子器件结构材料。

    一种超弹性Mg-Sc基形状记忆合金及其制备方法和应用

    公开(公告)号:CN119220837A

    公开(公告)日:2024-12-31

    申请号:CN202411350485.7

    申请日:2024-09-26

    Abstract: 一种超弹性Mg‑Sc基形状记忆合金及其制备方法和应用。本发明属于形状记忆合金领域。本发明的目的是为了解决现有Mg‑Sc基形状记忆合金无法兼顾性能和制造成本的技术问题。本发明的方法:先按Mg‑xat.%Sc‑yat.%Gd,x=17~22,y=1~2,称取原料;然后在高温密闭条件下分阶段进行熔炼,冷却后得到铸锭;接着对铸锭进行均匀化处理;最后对铸锭进行热挤压,冷轧和循环热处理。本发明通过严格控制低成本稀土元素Gd的掺杂量,达到既最大限度的提升合金的强度,同时又起到降低成本的目的,与此同时,结合热挤压、冷轧以及循环热处理的方法综合提升了提升Mg‑Sc基记忆合金的超弹性性能以及力学性能。

    短纤维增强复合材料局部塑性应变张量的测量方法

    公开(公告)号:CN114563431B

    公开(公告)日:2024-12-13

    申请号:CN202210189555.X

    申请日:2022-02-28

    Abstract: 本发明涉及材料塑性变形测量技术领域,尤其涉及一种短纤维增强复合材料局部塑性应变张量的测量方法,包括:获取待测量的样品并确定待测区域,在测量坐标系下测定待测区域中的每根短纤维的指向;基于待测区域中的所有短纤维的指向,确定待测区域的三个应变主轴,建立应变主轴坐标系;在建立的应变主轴坐标系下,基于待测区域中的所有短纤维的指向分布情况,计算主应变;将主应变旋转至测量坐标系下,得到测量坐标系下测定的应变张量。本发明能够实现简捷地、可靠地测量并表征短纤维增强复合材料局部塑性应变性能。

    一种具有室温磁相变性能的镍锰锡钴合金及其高效增材制造方法和应用

    公开(公告)号:CN116251963B

    公开(公告)日:2024-08-09

    申请号:CN202310039248.8

    申请日:2023-01-13

    Abstract: 一种具有室温磁相变性能的镍锰锡钴合金及其高效增材制造方法和应用。本发明属于增材制造和固体制冷领域。本发明针对现有镍锰基合金增材制造过程中,原材料粉末质量和成形态零件的性能较差以及具有良好性能的样品制备工艺复杂,需要后处理等缺点。本发明的方法:先按Ni41Mn43Sn10Co6的原子计量比称取原料,在此基础上再额外称取过量锰片,将合金原料采用高频感应法熔炼,得到合金液;然后气雾化制粉;最后采用激光粉末床熔融工艺进行成形。本发明通过合金成分设计以及制备工艺的协同调控获得了具有特定组织、结构和性能的制备态样品,在不经过热处理的条件下获得了具有优异巨磁热效应的样品,大大减少了工艺流程,降低了生产成本。

Patent Agency Ranking