-
公开(公告)号:CN111680059B
公开(公告)日:2023-08-15
申请号:CN202010356697.1
申请日:2020-04-29
Applicant: 国家计算机网络与信息安全管理中心 , 北京蓝光汇智网络科技有限公司
IPC: G06F16/245 , G06F16/9536 , G06F21/31
Abstract: 本发明公开了一种基于特定区域的活跃人员、常驻人员的分析方法,其包括:S1、采集特定区域内的账户信息;S2、对账户信息进行去重;根据人员记录库中的账户信息更新人员统计库中的账户ID、账户的出现时间、账户所在地的经纬度以及账户的出现次数;S3、基于人员统计库,将出现次数排名靠前的账户标识为活跃人员;S4、基于人员记录库,从活跃人员中分别过滤出有效人员、稳定人员,有效人员和稳定人员的并集为常驻人员。本发明可有效地统计和识别出某个特定区域的社交渠道上的活跃人员和常驻人员,进而实现更加高效和多方面的支持网络舆情的分析工作。
-
公开(公告)号:CN116467454A
公开(公告)日:2023-07-21
申请号:CN202310504562.9
申请日:2023-05-06
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F16/9537 , G06F40/194
Abstract: 本发明公开了一种综合多模型的网络热点话题传播模式分类方法,其包括以下步骤:步骤一、收集平台t时间段内的目标热点话题的帖子数据;步骤二、基于帖子数据计算帖子基本维度信息;步骤三、绘制关于时间‑帖子数量的话题热度变化曲线;步骤四、提取目标热点话题的竞争性话题,并计算竞争性话题数量;步骤五、基于帖子数据,量化目标热点话题的传播角色的信息;步骤六、通过漏斗模型和网络模型,进行目标热点话题的传播模式识别分类。本发明构建了一种普适的网络热点话题传播模式识别分类方法,能够有效地判断话题的传播类型,即使在话题部分维度数据缺失的情况下仍然具有较好的分类结果。
-
公开(公告)号:CN113449601B
公开(公告)日:2023-05-16
申请号:CN202110591209.X
申请日:2021-05-28
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06V40/10 , G06V20/40 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/084
Abstract: 本发明提出一种基于渐进性平滑损失的行人重识别模型训练方法,包括:获取训练样本数据;其中,所述训练样本数据包括多个包含行人的视频;将所述训练样本数据输入至初始模型中,得到对应各所述包含行人的视频的帧级别特征和视频级别特征;分别基于所述帧级别特征和所述视频级别特征计算第一损失和第二损失;基于所述第一损失和所述第二损失对所述初始模型的模型参数进行优化,得到行人重识别模型。
-
公开(公告)号:CN115393697A
公开(公告)日:2022-11-25
申请号:CN202210895693.X
申请日:2022-07-28
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06V20/00 , G06V10/26 , G06V10/30 , G06V10/40 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明提出一种基于多元特征融合分割的图片伪造检测方法和系统,通过提取图像中伪造区域的光照梯度、噪声分布、压缩一致性特征后,对其进行加权融合成一个新的综合特征,送入到专用的分割神经网络判断图像是否是伪造的,并标记出伪造区域,同时将多元融合特征与网络分割结果结合,给出伪造检测的解释性展示,在提高传统方法的准确率和普适性的同时,弥补了深度学习方法可解释性较低的不足。
-
公开(公告)号:CN114912434A
公开(公告)日:2022-08-16
申请号:CN202210495306.3
申请日:2022-05-07
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院自动化研究所
IPC: G06F40/211 , G06F40/253 , G06F40/268 , G06N3/04 , G06N3/08 , G06N5/02 , G06K9/62
Abstract: 本发明公开了一种风格文本的生成方法及装置、存储介质、电子设备,其中,该方法包括:根据特征词和观点词构建句法模板;根据所述句法模板提取文本特征标签组合;确定目标风格文本的目标写作风格,将所述目标写作风格的风格参数作为生成条件嵌入Bert生成模型中,生成目标Bert语言表征模型;以所述文本特征标签组合为所述目标Bert语言表征模型的输入,生成与所述目标写作风格对应的条件文本。通过本发明,解决了相关技术采用网络模型生成的文本风格单一的技术问题,本方案可用于在信息传播过程中生成更多优质内容和个性化内容,提高文本的丰富度,提升传播影响力。
-
公开(公告)号:CN109145109B
公开(公告)日:2022-06-03
申请号:CN201710464424.7
申请日:2017-06-19
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F16/2458 , G06Q50/00
Abstract: 本发明涉及一种基于社交网络的用户群体消息传播异常分析方法和装置,包括:获取在线社交网络中用户群体的历史聊天记录,根据预先设定的时间跨度,获取历史聊天记录在时间跨度内用户群体中所有用户所发布的消息,作为消息集合;对于消息集合,根据预先设定的时间范围统计用户群体在每个时间范围内所发布的消息总数;基于时序相关性的特征提取法,对每个消息总数的特征进行提取,并将提取结果集合为样本集合;根据消息总数并采用聚类算法为样本集合对样本集合进行聚类,生成异常样本;根据异常样本判定其所在的用户群体存在消息传播异常。由此本发明能够应对数据涌发现象,同时算法直观简单,准确率更高,且本发明应用场景广泛。
-
公开(公告)号:CN108733763B
公开(公告)日:2022-05-17
申请号:CN201810338555.5
申请日:2018-04-16
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9535
Abstract: 本发明公开了一种基于微博热门事件计算关键节点的方法,包括:获取历史热门事件的转发数、评论数、点赞数和阅读数,定义热门值,并确定热门临界值;获取历史热门事件的初步关键博主,获取作为初步关键传播时间,建立关键传播时间的计算公式;获取目标事件的转发数、评论数、点赞数和阅读数,若目标事件的热门值达到热门临界值,则计算出目标事件的的关键传播时间,获得关键时间点;选取在关键时间点附近发微博的若干博主,获取其中与其它博主关联次数最多的博主,即为目标事件的关键博主。本发明还提供了基于微博热门事件计算关键节点的装置。本发明能够在微博热门事件在不可控地爆发之前,找到推动此事件的关键博主,从而使得事件得以控制。
-
公开(公告)号:CN113946734A
公开(公告)日:2022-01-18
申请号:CN202110978180.0
申请日:2021-08-24
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/951 , G06F16/955 , G06F9/54
Abstract: 本发明公开了基于爬虫的数据采集系统,包括:URL管理器,用于获取URL链接;HTML下载器,用于根据所述URL链接下载HTML网页;HTML解析器,用于解析所述HTML网页的源代码,获得网页数据;数据存储器,用于存储所述网页数据。本发明使用方便,用户体验好。
-
公开(公告)号:CN113343810A
公开(公告)日:2021-09-03
申请号:CN202110590381.3
申请日:2021-05-28
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
Abstract: 本发明提出一种基于时序多样性与相关性的行人重识别模型训练方法,包括以下步骤:获取训练样本数据,所述训练样本数据包括多个包含行人的视频序列;将所述训练样本数据输入至初始模型中采样各所述包含行人的视频序列的多帧视频,并且提取所述多帧视频的帧级别特征,聚合所述帧级别特征得到视频级别特征;基于所述视频级别特征计算视频级别损失;基于所述视频级别损失对所述初始模型的模型参数进行优化,得到行人重识别模型。
-
公开(公告)号:CN110287314B
公开(公告)日:2021-08-06
申请号:CN201910418900.0
申请日:2019-05-20
Applicant: 中国科学院计算技术研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/35
Abstract: 本发明涉及一种基于无监督聚类的长文本可信度评估方法,包括:以已知长文本获取训练数据,提取该训练数据的训练特征以构建训练特征向量集,对该训练特征向量集进行无监督聚类,得到多个训练类心;以待评估长文本获取评估数据,提取该评估数据的评估特征向量;获取该评估特征向量相对该训练类心的评估值,并以该评估值得到该待评估长文本的可信度。本发明通过无监督聚类对长文本进行可信度评估,在实施过程中不需要标注数据,节省了人力、物力与时间,避免了数据中标签稀疏带来的困扰;提取了长文本的文本特征,对于可信度评估任务更加适用,使用该模型得到的文本的可信度更具有可解释性,同时在平台之间可以迁移。
-
-
-
-
-
-
-
-
-