-
公开(公告)号:CN114912434A
公开(公告)日:2022-08-16
申请号:CN202210495306.3
申请日:2022-05-07
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院自动化研究所
IPC: G06F40/211 , G06F40/253 , G06F40/268 , G06N3/04 , G06N3/08 , G06N5/02 , G06K9/62
Abstract: 本发明公开了一种风格文本的生成方法及装置、存储介质、电子设备,其中,该方法包括:根据特征词和观点词构建句法模板;根据所述句法模板提取文本特征标签组合;确定目标风格文本的目标写作风格,将所述目标写作风格的风格参数作为生成条件嵌入Bert生成模型中,生成目标Bert语言表征模型;以所述文本特征标签组合为所述目标Bert语言表征模型的输入,生成与所述目标写作风格对应的条件文本。通过本发明,解决了相关技术采用网络模型生成的文本风格单一的技术问题,本方案可用于在信息传播过程中生成更多优质内容和个性化内容,提高文本的丰富度,提升传播影响力。
-
公开(公告)号:CN109977227B
公开(公告)日:2021-06-22
申请号:CN201910205999.6
申请日:2019-03-19
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F40/289 , G06F40/12 , G06N3/00 , G06N3/12
Abstract: 本发明属于信息分类领域,具体涉及了一种基于特征编码的文本特征提取方法、系统、装置,旨在解决文本特征提取中运算复杂度高、分类效率和精度低的问题。本发明方法包括:对获取的文本预处理,获得词候选特征序列;基于词候选特征序列,生成多个二进制编码;采用基因遗传算法筛选二进制编码,获得最优二进制编码;解码最优二进制编码获得最优词特征序列并输出。本发明将一系列候选特征转化为易处理的编码序列,并使用基因遗传算法的自动筛选功能,对特征进行最大化的全局最优挑选,能够有效地筛选出最小有效特征集。
-
公开(公告)号:CN111859979A
公开(公告)日:2020-10-30
申请号:CN202010549940.1
申请日:2020-06-16
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F40/30 , G06F40/289 , G06F16/953 , G06N3/04
Abstract: 本申请涉及一种讽刺文本协同识别方法、装置、设备及计算机可读介质。该方法包括:获取待处理文本,待处理文本来自于社交媒体网络平台;提取待处理文本的语义特征信息和主题特征信息,语义特征信息用于表征待处理文本与讽刺类型的关联关系,主题特征信息用于表征待处理文本体现的讽刺主题;根据第一神经网络模型对语义特征信息和主题特征信息的识别结果确定待处理文本的文本类型,并确定待处理文本的主题标签。本申请利用表征语义情感的特征和表征讽刺主题的特征对待处理文本进行协同识别,既确定是否带有讽刺含义,在具备讽刺含义的情况下还同时识别出体现讽刺的主题,实现有主题区分度的文本语义表示,有效提高了讽刺识别的准确率和解释性。
-
公开(公告)号:CN110083699A
公开(公告)日:2019-08-02
申请号:CN201910202638.6
申请日:2019-03-18
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/35
Abstract: 本发明提出了一种基于深度神经网络的新闻流行度预测模型训练方法,包括:获取特定主题设定时间段的新闻文章数据,用Pandas进行数据清洗后按照设定时间长度进行顺次分组,获取按时间顺序排列得到新闻流行度序列;依据所述新闻流行度序列,从第一个流行度开始依次按照采样长度为w的连续序列作为输入样本,并采样其之后一期的数据作为输出样本,构建训练样本集;随机从训练样本集中选择训练样本对基于LSTM网络的新闻流行度预测模型进行训练,并采用Pearson相关系数进行关联性分析删除不良的训练样本,循环训练过程至训练结束。本发明可以获得用来对无趋势性、无季节性及非线性新闻流行度进行较高准确率预测的新闻流行度预测模型。
-
公开(公告)号:CN105786991B
公开(公告)日:2019-03-15
申请号:CN201610089962.8
申请日:2016-02-18
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种结合用户情感表达方式的中文情感新词识别方法和系统。其中,该方法包括获取输入文本;基于所述输入文本中词频大于第一预设阈值的字符串,构建候选新词集合;使用中文旧词词库对所述候选新词集合进行过滤;基于统计指标从过滤的候选新词集合中筛选新词,构建新词集合;其中,所述统计指标为构词能力、点互信息、灵活度和邻接熵;基于情感倾向点互信息,从所述新词集合中识别情感新词,构建初始情感新词集合;基于所述输入文本中涉及的用户的情感表达方式,从所述初始情感新词集合中筛选高置信度情感新词,并将其作为所识别的中文情感新词。通过本发明实施例解决了如何提高情感新词识别的精度和灵活度的技术问题。
-
公开(公告)号:CN108563686A
公开(公告)日:2018-09-21
申请号:CN201810208801.5
申请日:2018-03-14
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及计算机技术领域,具体提供了一种基于混合神经网络的社交网络谣言识别方法及系统,旨在解决如何在考虑谣言转发评论信息的情况下,准确识别社交网络中谣言的技术问题。为此目的,本发明中社交网络谣言识别方法,首先利用三种不同的神经网络分别获取用户特征向量、原文特征向量和传播信息特征向量,然后将用户特征向量、原文特征向量和传播信息特征向量融合为新的特征向量,最后利用第四种神经网络对融合后的特征向量进行谣言识别。基于上述步骤,能够快速且准确地检测到社交网络中的谣言。同时,本发明中的系统能够执行并实现上述步骤。
-
公开(公告)号:CN111859980B
公开(公告)日:2024-04-09
申请号:CN202010549951.X
申请日:2020-06-16
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F40/30 , G06F40/289 , G06F16/9536 , G06N3/0442 , G06N3/0464 , G06N3/084
Abstract: 本申请涉及一种讽刺类型的文本识别方法、装置、设备及计算机可读介质。该方法包括:获取待处理文本,待处理文本来自于社交媒体网络平台;采用多种方式提取待处理文本的目标特征信息,目标特征信息为从特征集合中选择出来的多个特征信息的加权和表示;根据第一神经网络模型对目标特征信息的识别结果确定待处理文本的文本类型,第一神经网络模型是采用具有标记信息的训练数据对第二神经网络模型进行训练后得到的,标记信息用于标记训练数据是否为目标类型。本申请从多个维度捕获词间关联特征,并从讽刺文本的情感倾向转换出发,挖掘词语间的冲突性,进而充分体现句子中地所蕴含的讽刺含义,最终准确、合理地识别讽刺文本。
-
公开(公告)号:CN114330321A
公开(公告)日:2022-04-12
申请号:CN202111666897.8
申请日:2021-12-31
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F40/279 , G06K9/62 , G06N3/04 , G06N3/08 , G06N5/02
Abstract: 本发明公开了一种用户先验知识增强的文本风格迁移方法、装置及电子设备,所述方法包括:获取用户先验知识数据,并基于所述用户先验知识数据构建预设神经网络模型;获取用户输入数据,并将所述用户输入数据映射至所述预设神经网络模型中,生成与所述用户输入数据的表达方式不同的目标文本内容表示;获取用户关注领域表示,并结合所述目标文本内容表示和用户关注领域表示,生成目标文本内容。本发明不仅可以实现文本风格的转换,还提升了转换文本内容与用户要求的相关性。
-
公开(公告)号:CN110083699B
公开(公告)日:2021-01-12
申请号:CN201910202638.6
申请日:2019-03-18
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/35
Abstract: 本发明提出了一种基于深度神经网络的新闻流行度预测模型训练方法,包括:获取特定主题设定时间段的新闻文章数据,用Pandas进行数据清洗后按照设定时间长度进行顺次分组,获取按时间顺序排列得到新闻流行度序列;依据所述新闻流行度序列,从第一个流行度开始依次按照采样长度为w的连续序列作为输入样本,并采样其之后一期的数据作为输出样本,构建训练样本集;随机从训练样本集中选择训练样本对基于LSTM网络的新闻流行度预测模型进行训练,并采用Pearson相关系数进行关联性分析删除不良的训练样本,循环训练过程至训练结束。本发明可以获得用来对无趋势性、无季节性及非线性新闻流行度进行较高准确率预测的新闻流行度预测模型。
-
公开(公告)号:CN107153672A
公开(公告)日:2017-09-12
申请号:CN201710171926.0
申请日:2017-03-22
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种基于言语行为理论的用户交互意图识别方法及系统,所述用户交互意图识别方法包括:基于外部知识源构建行为标记语词典;根据所述行为标记语词典,自动标注用户在社交媒体平台上输入的在线文本的意图;利用自动标注语料训练基于特征的分类器对所述在线文本的意图进行分类识别,确定用户的交互意图类别。本发明基于言语行为理论的用户交互意图识别方法通过基于外部知识源构建对应不同意图类别的行为标记语词典,并基于行为标记语词典自动标注扩充语料和基于特征分类识别,能够有效识别社交媒体中的用户交互意图,识别准确度高,可用于商务智能、社情舆情、决策评估等领域的意图分析与识别,应用范围广。
-
-
-
-
-
-
-
-
-