基于深度神经网络的新闻流行度预测模型训练方法

    公开(公告)号:CN110083699A

    公开(公告)日:2019-08-02

    申请号:CN201910202638.6

    申请日:2019-03-18

    IPC分类号: G06F16/35

    摘要: 本发明提出了一种基于深度神经网络的新闻流行度预测模型训练方法,包括:获取特定主题设定时间段的新闻文章数据,用Pandas进行数据清洗后按照设定时间长度进行顺次分组,获取按时间顺序排列得到新闻流行度序列;依据所述新闻流行度序列,从第一个流行度开始依次按照采样长度为w的连续序列作为输入样本,并采样其之后一期的数据作为输出样本,构建训练样本集;随机从训练样本集中选择训练样本对基于LSTM网络的新闻流行度预测模型进行训练,并采用Pearson相关系数进行关联性分析删除不良的训练样本,循环训练过程至训练结束。本发明可以获得用来对无趋势性、无季节性及非线性新闻流行度进行较高准确率预测的新闻流行度预测模型。

    用于时序预测的参数优化系统

    公开(公告)号:CN108805254A

    公开(公告)日:2018-11-13

    申请号:CN201810393788.5

    申请日:2018-04-27

    IPC分类号: G06N3/00

    CPC分类号: G06N3/006

    摘要: 本发明属于时序预测技术领域,具体提供了一种时序预测的参数优选系统,旨在解决现有技术对先验知识要求高、可拓展途径较低、时间复杂度高、实际可行度低以及鲁棒性差的技术问题。为此目的,本发明提供的参数优化系统包括参数优化模块,参数优化模块配置为基于预先构建的参数优化模型对预先获取的时序预测模型进行参数优化。其中,参数优化模块包括空间调控单元以及收敛调控单元;空间调控单元配置为基于第一权重函数调控参数优化模块的空间搜索范围;收敛调控单元配置为基于第二权重函数调控参数优化模块的收敛速率。本发明的系统增加了分布式表现,各个个体可以高效交流、协作,且提高了算法的性能。

    基于深度神经网络的新闻流行度预测模型训练方法

    公开(公告)号:CN110083699B

    公开(公告)日:2021-01-12

    申请号:CN201910202638.6

    申请日:2019-03-18

    IPC分类号: G06F16/35

    摘要: 本发明提出了一种基于深度神经网络的新闻流行度预测模型训练方法,包括:获取特定主题设定时间段的新闻文章数据,用Pandas进行数据清洗后按照设定时间长度进行顺次分组,获取按时间顺序排列得到新闻流行度序列;依据所述新闻流行度序列,从第一个流行度开始依次按照采样长度为w的连续序列作为输入样本,并采样其之后一期的数据作为输出样本,构建训练样本集;随机从训练样本集中选择训练样本对基于LSTM网络的新闻流行度预测模型进行训练,并采用Pearson相关系数进行关联性分析删除不良的训练样本,循环训练过程至训练结束。本发明可以获得用来对无趋势性、无季节性及非线性新闻流行度进行较高准确率预测的新闻流行度预测模型。