-
公开(公告)号:CN109992645B
公开(公告)日:2021-05-14
申请号:CN201910250572.8
申请日:2019-03-29
Applicant: 国家计算机网络与信息安全管理中心 , 拓尔思信息技术股份有限公司
Abstract: 本发明公开了一种基于文本数据的资料管理系统及方法,属于信息管理系统领域。资料管理系统包括数据上传模块,数据存储模块,数据解析模块,数据检索模块,数据可视化模块,工具箱和管理台。所述方法首先将本地文件利用数据上传模块上传至数据存储模块,然后数据解析模块对上传文件进行解析处理,得到上传文件的属性并进行存储。将解析后的资料内容及附件分别存储在数据存储模块中的全文索引搜索引擎数据库和关系型数据库中。最后采用相似性判断技术,利用数据检索模块对存储到数据库中的资料进行检索;利用数据可视化模块对所有资料内容按分类进行展示、文档操作功能和各种可视化展示。本发明提高了工作效率,提升了对战略研究素材的管理能力。
-
公开(公告)号:CN112214558A
公开(公告)日:2021-01-12
申请号:CN202011296138.2
申请日:2020-11-18
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/28 , G06F16/33 , G06F16/951 , G06N3/04 , G06N3/08
Abstract: 本申请提供了一种主题相关度判别方法及装置,方法包括:对获取的网页构建网页特征向量;利用预先训练的语义向量空间模型对选定的主题特征向量与网页特征向量之间的相似度进行计算;筛选出相似度高于预设值的网页特征向量。本申请结合了语义向量相似度计算和机器学习方法的优点,相比于现有技术,可以实现较高的判别精度,并且本申请在训练样本的筛选上也作出了不同于现有技术的改进。
-
公开(公告)号:CN111858728A
公开(公告)日:2020-10-30
申请号:CN202010605313.5
申请日:2020-06-29
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/25
Abstract: 本发明公开了不同数据源的数据抽取方法,包括:获取数据源和数据源属性名,计算数据源属性名与预设属性名的相似度,若所述相似度大于预设阈值,则建立所述数据源属性名与所述预设属性名的映射关系,构建属性名映射表;根据所述属性名映射表,获取与所述预设属性名对应的不同数据源,根据数据源的优先级,按照设定的抽取规则抽取数据入库;以及,不同数据源的数据抽取装置,设备和存储介质。本发明通过自动化创建属性名映射表,可以对不同数据源的数据进行自动抽取,高效地构建不同领域的知识库并自动化更新,成本低。
-
公开(公告)号:CN111581956A
公开(公告)日:2020-08-25
申请号:CN202010269087.8
申请日:2020-04-08
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
Inventor: 赵忠华 , 吴俊杰 , 赵志云 , 葛自发 , 孙小宁 , 张冰 , 王欣欣 , 李欣 , 袁钟怡 , 孙立远 , 付培国 , 王禄恒 , 左源 , 李丰志 , 李英汉 , 户中方
IPC: G06F40/279 , G06F40/216 , G06F40/242 , G06F40/126 , G06F16/335 , G06F16/35 , G06K9/62
Abstract: 本发明公开了一种基于BERT模型和K近邻的敏感信息识别方法,包括:步骤一、对文本进行预处理;步骤二、标注多条预处理文本为敏感信息和非敏感信息,步骤三、表征得到敏感信息的向量表征和非敏感信息的向量表征;步骤四、以敏感信息的向量表征为正类数据、以非敏感信息的向量表征为负类数据,构建近似最邻近搜索图;步骤五、将待测文本的向量表征输入至近似最邻近搜索图,搜索得到近似最近邻的K个节点,判断节点属性及根据该条待测文本的敏感度权重,修正其敏感度值后,判断是否为敏感信息。本发明公开了一种基于BERT模型和K近邻的敏感信息识别系统。本发明具有提升文本质量,提升敏感信息识别的速度和精度的有益效果。
-
公开(公告)号:CN109145109A
公开(公告)日:2019-01-04
申请号:CN201710464424.7
申请日:2017-06-19
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F16/2458 , G06Q50/00
CPC classification number: G06Q50/01
Abstract: 本发明涉及一种基于社交网络的用户群体消息传播异常分析方法和装置,包括:获取在线社交网络中用户群体的历史聊天记录,根据预先设定的时间跨度,获取历史聊天记录在时间跨度内用户群体中所有用户所发布的消息,作为消息集合;对于消息集合,根据预先设定的时间范围统计用户群体在每个时间范围内所发布的消息总数;基于时序相关性的特征提取法,对每个消息总数的特征进行提取,并将提取结果集合为样本集合;根据消息总数并采用聚类算法为样本集合对样本集合进行聚类,生成异常样本;根据异常样本判定其所在的用户群体存在消息传播异常。由此本发明能够应对数据涌发现象,同时算法直观简单,准确率更高,且本发明应用场景广泛。
-
公开(公告)号:CN107153672A
公开(公告)日:2017-09-12
申请号:CN201710171926.0
申请日:2017-03-22
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种基于言语行为理论的用户交互意图识别方法及系统,所述用户交互意图识别方法包括:基于外部知识源构建行为标记语词典;根据所述行为标记语词典,自动标注用户在社交媒体平台上输入的在线文本的意图;利用自动标注语料训练基于特征的分类器对所述在线文本的意图进行分类识别,确定用户的交互意图类别。本发明基于言语行为理论的用户交互意图识别方法通过基于外部知识源构建对应不同意图类别的行为标记语词典,并基于行为标记语词典自动标注扩充语料和基于特征分类识别,能够有效识别社交媒体中的用户交互意图,识别准确度高,可用于商务智能、社情舆情、决策评估等领域的意图分析与识别,应用范围广。
-
公开(公告)号:CN106940732A
公开(公告)日:2017-07-11
申请号:CN201710212983.9
申请日:2017-04-01
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种面向微博数据的疑似水军发现方法,属于计算机应用技术领域。本发明共分为以下六个步骤,分别为相关微博数据的采集;数据预处理;用户特征提取;构建训练集;训练水军检测模型;预测判别未标注数据。对比现有技术,本发明实现了数据的充分利用,方便快捷的进行群体发现而不用建立复杂的分类检测模型,从而降低了算法的复杂度,并且算法的模块性较高,可以投入大规模数据计算,具有较高的稳定性;本发明除了可以对单一用户进行水军检测,还可以对某一特定事件中的一批用户进行识别,该方法模块性极强,可以稳定适用于大规模数据计算框架下。
-
公开(公告)号:CN115293479A
公开(公告)日:2022-11-04
申请号:CN202210559536.1
申请日:2022-05-23
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
Abstract: 本发明公开了一种舆情分析工作流系统,包括:数据分析功能模块,其包括N个能够进行舆情数据分析的数据分析模块;工作流建立模块,其根据舆情分析需求从数据分析功能模块中选择多个数据分析模块,按顺序进行连接,建立对特定任务进行分析的工作流,针对同一事件不同分析角度的舆情分析需求,建立多个工作流,以对多个舆情分析任务进行分析;工作流管理模块,其对建立的工作流进行数据分析计算,并通过可视化工作流图查看计算结果;事件管理模块,其对同一事件的多个舆情分析任务进行管理,并通过舆情分析数据构建不同任务之间的联系。本发明还提供了舆情分析工作流方法。本系统和方法能够根据舆情分析需求实现从不同层次和不同角度获得舆情信息。
-
公开(公告)号:CN113255720A
公开(公告)日:2021-08-13
申请号:CN202110393842.8
申请日:2021-04-13
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06K9/62 , G06Q50/00 , G06F16/901
Abstract: 本发明公开了一种基于分层图池化的多视角聚类方法,包括以下步骤:将待处理数据划分成多视角数据集,然后将多视角数据集按各视角构建对应的图表示,得到对应的视图;采用分层图池化层迭代计算方法提取每个视图的聚类信息,每个视图的聚类信息包括对应该视图的粗化图和分配矩阵,该粗化图包括迭代后的邻接矩阵、特征矩阵、图拉普拉斯矩阵;采用多视角谱聚类融合方法融合所有视图的聚类信息,得到每一类特征向量所对应的类别。具有充分利用待处理数据本身的多视图特征,可以综合包含原各个视图的聚类信息。公开了一种基于分层图池化的多视角聚类系统,包括:图构建模块、聚类信息计算提取模块、多视角融合模块。本发明具有提升聚类效果的有益效果。
-
公开(公告)号:CN107633044B
公开(公告)日:2021-08-06
申请号:CN201710827984.4
申请日:2017-09-14
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种基于热点事件的舆情知识图谱构建方法,属于自然语言处理领域;首先实时获取微博文本,对每个微博文本进行处理,构建文本簇,计算每个文本簇所属的话题类别,按类别识别每个簇中的热点事件,统计每个热点事件的多维属性;识别参与热点事件讨论的重要人物和机构,并获取重要人物和机构的多维属性;最后构建事件、人物、机构的多维属性体系及关系类型,以事件、人物、机构为实体,事件、人物、机构之间的关系为关联,构建舆情知识图谱。本发明能够从多个维度对热点事件、人物、机构进行刻画,实现对热点事件、人物、机构的全方位解析;并根据实际需求,设置不同话题类别的权重,实现不同话题的舆情知识图谱构建。
-
-
-
-
-
-
-
-
-