-
公开(公告)号:CN115385386B
公开(公告)日:2023-12-08
申请号:CN202211137558.5
申请日:2022-09-19
Applicant: 哈尔滨工业大学
Abstract: 一种双金属硫化物/金属硫化物/泡沫镍异质结构材料的制备方法,它涉及双金属硫化物与单金属硫化物的异质结构复合材料的制备方法。它是要解决现有的金属硫化物电容器材料的电化学性能差的技术问题。本方法是将清洗过的泡沫镍放入含金属离子的溶液中浸泡诱导泡沫镍基底参与反应,生成双金属氢氧化物/金属氢氧化物/泡沫镍复合材料,之后再与硫化钠反应生成双金属硫化物/金属硫化物/泡沫镍复合材料。本发明的双金属硫化物/金属硫化物/泡沫镍异质结构复合材料的电容在电流密度为3A g‑1时为1209C g‑1,当电流密度从3A g‑1增至15A g‑1时,电容保持率达68%。可用于高性能电容器领域。
-
公开(公告)号:CN116969819A
公开(公告)日:2023-10-31
申请号:CN202311015127.6
申请日:2023-08-14
Applicant: 哈尔滨工业大学
IPC: C07C45/00 , C07C45/81 , C07C45/79 , C07C45/78 , C07C49/235
Abstract: 一种可见光诱导的1,4‑烯炔化合物分子内炔基迁移并实现未活化烯烃双官能团化的方法,它是要解决现有的未活化烯烃直接选择性官能团化的方法中反应条件苛刻和区域选择性差的技术问题。本方法:室温下,将烯炔化合物、三氟甲基源、光催化剂、碱加入到透明反应器中,密封;然后用氮气置换反应器中的空气,形成氮气气氛,再注入溶剂,混合均匀;将反应器用蓝色LEDs灯光照进行反应;在反应结束后,旋蒸除去溶剂,再经预制硅胶柱层析分离纯化,得到烯炔化合物炔基迁移,并实现烯烃双官能团化的产物,该化合物的结构式为#imgabs0#其中X为卤素;它可以用于药物先导化合物的筛选、供生物活性测试或有机方法学机理研究领域。
-
公开(公告)号:CN114566395A
公开(公告)日:2022-05-31
申请号:CN202111270167.6
申请日:2021-10-29
Applicant: 哈尔滨工业大学
Abstract: 基于生物质衍生的氮硫双掺杂的金属氧化物/碳基复合材料的制备方法,它涉及金属氧化物/碳基复合材料的制备方法。它是要解决现有的Co3O4@浒苔多孔碳纤维超容电极材料的比电容低的技术问题。本方法:一、用浒苔制备生物质衍生碳基底;二、制备金属氧化物/碳材料;三、制备氮硫双掺杂的金属氧化物/碳基复合材料。该复合材料的电容在电流密度为1Ag‑1时为1600Fg‑1,当电流密度从1Ag‑1增至50Ag‑1时,电容保持率达65.8%。以该复合材料组装的非对称超级电容器在1.5V的电压窗口下无明显极化且在1.48KW kg‑1的功率密度下的能量密度达73.6Whkg‑1,可用于海洋生态保护及能源存储领域。
-
公开(公告)号:CN114159629A
公开(公告)日:2022-03-11
申请号:CN202111483084.5
申请日:2021-12-07
Applicant: 哈尔滨工业大学
Abstract: 一种用于术中突发冠脉穿孔急救的血管覆膜支架的高速制备方法,本发明涉及血管覆膜支架的制备领域,它是要解决现有的覆膜支架易脱载、易碎、稳定性差、外径大的技术问题。方法:首先制备基膜材料,然后制备铸膜液,再将连带球囊的管网状血管支架放入到铸膜液中浸泡,取出后放入凝固浴中使支架表面得到一层包覆紧密、完全固化的薄膜,即完成血管覆膜支架的制备。本发明的自制血管覆膜支架制备速度快,可在11s~105s时间内制备完成,拉伸性能好,稳定性好,膜厚度薄,对血管支架的外径影响极小,不易脱载,可用于医疗领域。
-
公开(公告)号:CN113845107A
公开(公告)日:2021-12-28
申请号:CN202111271924.1
申请日:2021-10-29
Applicant: 哈尔滨工业大学
Abstract: 利用二维共价有机骨架热解制备多孔碳纳米片的方法,本发明涉及多孔碳纳米片的方法。本发明是要解决现有的用COF制备的多孔碳材料比电容低的技术问题。本发明的方法:利用醛类反应物与胺类反应物在氮气保护下反应,得到聚合物;再将聚合物放入管式炉中,在氮气气氛下加热,得到多孔碳纳米片。本发明的多孔碳纳米片的比表面积达到300.847m2g‑1~1496.588m2g‑1,孔径为3.132nm~3.713nm。利用该多孔碳纳米片制备的电极的比电容为500‑630F g‑1,阻抗为0.8~2.7Ω,可用于电化学领域。
-
公开(公告)号:CN106750277B
公开(公告)日:2019-05-07
申请号:CN201611103487.1
申请日:2016-12-05
Applicant: 哈尔滨工业大学
IPC: C08G73/02 , C08K3/14 , C08L79/02 , C08L91/06 , C01B32/921
Abstract: 一种MXene‑聚苯胺复合材料及其制备方法,本发明涉及一种MXene复合材料的制备方法。本发明是要解决现有的二维过渡金属碳化物Mxene的吸波性能差的技术问题。本发明的MXene‑聚苯胺复合材料是由层状的二维过渡金属碳化物及包覆在二维过渡金属碳化物表面的聚苯胺壳层组成。制备方法:将苯胺加入到水中搅拌后,得到苯胺/水分散液,再调节pH值为1.5~2,得到苯胺的盐酸盐溶液;将胺的盐酸盐溶液加入到二维过渡金属碳化物的水分散液中低温下搅拌混合,得到MXene/苯胺混合液;再将过硫酸铵溶液滴加到MXene/苯胺混合液中,低温下搅拌反应,再洗涤、干燥,得到MXene‑聚苯胺复合材料。它可用于吸波领域。
-
公开(公告)号:CN106006608B
公开(公告)日:2018-03-06
申请号:CN201610315885.3
申请日:2016-05-12
Applicant: 哈尔滨工业大学
IPC: C01B32/184 , C01B32/194 , B33Y70/00 , B82Y30/00
Abstract: 一种利用3D溶液打印技术制备石墨烯纳米带纤维的方法,本发明涉及利用3D打印技术制备纤维的方法,本发明是要解决的现有的石墨烯纤维的加工方法工艺复杂、生产周期长的技术问题。本方法:一、由多壁碳纳米管制备石墨烯纳米带;二、把石墨烯纳米带分散在高纯去离子水中得到打印溶液,再经3D液态打印机的打印器的喷头打印到乙酸乙酯的凝固浴中,凝固后,取出烘干,得到石墨烯纳米带纤维。该方法工艺简单,精度高,形状和尺寸要更改和调节,可工业化生产,所制备的石墨烯纳米带纤维的拉伸强度达到90~100MPa,同时该纤维具有较高的柔性,可用于能源存储器件、光伏器件、传感器等领域。
-
公开(公告)号:CN104984813A
公开(公告)日:2015-10-21
申请号:CN201510351240.0
申请日:2015-06-24
Applicant: 哈尔滨工业大学
IPC: B03B5/32
Abstract: 一种利用调节pH值进行纳米碲化铋粒度分级的方法,本发明涉及纳米碲化铋粒度分级的方法。它是要解决现有碲化铋纳米片的制备方法得到的Bi2Te3纳米片尺寸不均一、尺度分散性大的技术问题。本方法:一、在氮气气氛中,将碲化铋粉末加入到正丁基锂的正己烷溶液中浸泡,然后去除液体,把碲化铋在手套箱中静置;二、向碲化铋中加入水,搅拌或超声处理,得到Bi2Te3悬浮液;三、将Bi2Te3悬浮液调节pH值至7,离心分离,再逐步降低pH值,再分离,得到不同粒度的Bi2Te3纳米片,完成纳米碲化铋粒度分级。本方法方便、环保、便宜地分离出不同尺寸的二维Bi2Te3,而且粒度均匀,可用于电子学器件中。
-
公开(公告)号:CN119430884A
公开(公告)日:2025-02-14
申请号:CN202411661240.6
申请日:2024-11-20
IPC: C04B35/10 , C04B35/48 , C04B35/622 , C04B35/638 , B33Y10/00 , B33Y70/10
Abstract: 光固化3D打印与传统陶瓷加工技术协作模块化制备陶瓷材料的方法,它涉及光固化3D打印陶瓷与传统陶瓷加工技术模块化协作制造方法。它是要提供一种低成本、高效率的光固化3D打印与传统陶瓷加工技术协作模块化制备陶瓷材料的方法,本发明的方法是以溶剂响应的高分子聚合物树脂为基底配制得到的陶瓷打印浆料为基础,使用DLP打印机打印成型多个陶瓷生坯模块,采用乙酸正丁酯溶剂刺激激活生坯模块表面,与传统技术制造得到的陶瓷模块焊接为整体,并经过脱脂烧结工序后得到一体化结构完整的陶瓷材料。本方法降低了陶瓷总打印成本,可用于陶瓷制备领域。
-
公开(公告)号:CN116554494A
公开(公告)日:2023-08-08
申请号:CN202310574495.8
申请日:2023-05-22
Applicant: 哈尔滨工业大学
Abstract: 一种蒽基MOFs晶态材料及其制备方法和应用,它涉及金属‑有机骨架材料及其制备方法和应用,它是要解决现有的硝基芳烃爆炸物的检测方法检测设备昂贵、携带不便的技术问题。本发明的蒽基MOFs晶态材料的化学计量式为{Cd·(4Cl‑BDC)0.5·(STDC)0.5·L}n,其中4Cl‑BDC为去质子化的2,3,5,6‑四氯对苯二甲酸,STDC为去质子化的4,4’‑二苯乙烯二羧酸,L为9,10‑双(N‑苯并咪唑基)蒽,n为正整数。制法是将可溶性镉盐、2,3,5,6‑四氯对苯二甲酸、4,4’‑二苯乙烯二羧酸和9,10‑双(N‑苯并咪唑基)蒽加入到溶剂中进行溶剂热反应。该材料可用于检测0~5ppm的痕量三硝基苯酚,用于环境污染物荧光传感器领域。
-
-
-
-
-
-
-
-
-