一种可精准调控固体火箭发动机推力的阀门

    公开(公告)号:CN115059559B

    公开(公告)日:2024-05-24

    申请号:CN202210881818.3

    申请日:2022-07-26

    IPC分类号: F02K9/86

    摘要: 一种可精准调控固体火箭发动机推力的阀门,本发明为了解决现有可变推力固体火箭发动机是通过针栓的轴向移动调节燃烧室内的压力大小,针栓调节的动力使燃烧室产生波的作用,很难实现精确调节的问题。本发明的两组拉杆(7)平行设置,两组拉杆(7)之间通过铜制弹簧(5)连接,两组拉杆(7)均与下滑道(3)滑动连接,所述拉伸铜丝(6)的一端与拉杆(7)连接,拉伸铜丝(6)的另一端缠绕在电机(4)的输出轴上,电机(4)固定在支撑板(8)上,下滑道(3)和支撑板(8)均固定在底座(9)上,一组拉杆(7)的上端与左侧开合门(2)连接,另一组拉杆(7)的上端与右侧开合门(2)连接,开合门(2)的上端与上滑道(1)滑动连接。本发明采用可远程控制程序操控电机,通过电机控制拉伸铜丝进而实现阀门的开合以实现精准控制。

    一种POSS增强芳纶纳米纤维的透明柔性薄膜的制备方法

    公开(公告)号:CN107022094B

    公开(公告)日:2022-10-04

    申请号:CN201710263469.8

    申请日:2017-04-20

    摘要: 一种POSS增强芳纶纳米纤维的透明柔性薄膜的制备方法,它涉及一种透明柔性薄膜的制备方法。本发明的目的是要解决现有芳纶纤维纳米纤维膜强度低和热力学性能差的问题。方法:一、抽提;二、制备暗红色芳纶纳米纤维溶液;三、制备POSS分散液;四、制备POSS杂化芳纶纳米纤维溶液;五、制备杂化芳纶纳米纤维水凝胶;六、抽真空,干燥,得到POSS增强芳纶纳米纤维的透明柔性薄膜。本发明制备的POSS增强芳纶纳米纤维的透明柔性薄膜的拉伸强度大于316MPa,纯芳纶纳米纤维薄膜的拉伸强度为202MPa,拉伸强度提高了大约56.43%。本发明可获得一种POSS增强芳纶纳米纤维的透明柔性薄膜的制备方法。

    一种RGD-M13噬菌体/氧化再生纤维素复合止血材料的制备方法

    公开(公告)号:CN105435295B

    公开(公告)日:2018-07-06

    申请号:CN201510953638.1

    申请日:2015-12-15

    摘要: 一种RGD‑M13噬菌体/氧化再生纤维素复合止血材料的制备方法,它涉及一种止血材料的制备方法。本发明的目的是要解决现有氧化再生纤维素改性后的止血材料的止血时间提升幅度小,氧化再生纤维素的机械强度和生物可吸收性能降低的问题。方法:一、氧化再生纤维素的活化;二、将活化后的氧化再生纤维素浸入到RGD‑M13噬菌体悬液中,得到RGD‑M13噬菌体/氧化再生纤维素复合止血材料。使用本发明制备的RGD‑M13噬菌体/氧化再生纤维素复合止血材料进行止血,止血时间降低了10.4%~32.9%。本发明可获得一种RGD‑M13噬菌体/氧化再生纤维素复合止血材料。

    一种芳纶纳米纤维气凝胶的制备方法

    公开(公告)号:CN106977763A

    公开(公告)日:2017-07-25

    申请号:CN201710263470.0

    申请日:2017-04-20

    IPC分类号: C08J9/28 C08J3/09 C08L77/10

    摘要: 一种芳纶纳米纤维气凝胶的制备方法,它涉及一种气凝胶的制备方法。本发明的目的是要解决现有气凝胶的力学强度差和耐热差的问题。方法:一、抽提;二、制备暗红色芳纶纳米纤维溶液;三、制备芳纶纳米纤维水凝胶;四、真空抽滤,清洗;五、冷冻干燥,得到芳纶纳米纤维气凝胶。本发明制备的芳纶纳米纤维气凝胶初始分解温度在500℃,可在200℃~500℃温度区间内长时间使用;本发明制备的芳纶纳米纤维气凝胶的拉伸强度达到230MPa。本发明可获得一种芳纶纳米纤维气凝胶的制备方法。

    一种梯度分布的多孔隔热高强薄膜功能化探月取壤用取芯软袋的制备方法

    公开(公告)号:CN105648614B

    公开(公告)日:2017-06-13

    申请号:CN201511017327.0

    申请日:2015-12-29

    摘要: 一种梯度分布的多孔隔热高强薄膜功能化探月取壤用取芯软袋的制备方法,它涉及一种探月取壤用取芯软袋的制备方法。本发明的目的是要解决现有取芯软袋在探月取壤过程中,容易受钻进机构高温影响而引发纤维性能下降,而带来软袋意外断裂的问题。方法:一、制备取芯软袋;二、制备不同浓度的Kevlar纳米纤维溶液;三、搭建真空抽滤装置;四、复合,得到梯度分布的多孔隔热高强薄膜功能化探月取壤用取芯软袋。本发明制备的梯度分布的多孔隔热高强薄膜功能化探月取壤用取芯软袋内侧温度与未处理取芯软袋降低了27%~30%,断裂强度提高了17.2%~25%。本发明可获得一种梯度分布的多孔隔热高强薄膜功能化探月取壤用取芯软袋。

    一种富勒烯/氧化再生纤维素复合止血材料及其制备方法

    公开(公告)号:CN104383587B

    公开(公告)日:2016-10-19

    申请号:CN201410718679.8

    申请日:2014-12-01

    IPC分类号: A61L15/28 A61L15/20

    摘要: 一种富勒烯/氧化再生纤维素复合止血材料及其制备方法,它涉及一种止血材料及其制备方法。本发明的目的是要解决现有氧化再生纤维素改性后的材料止血性能提升幅度小,机械性能和生物吸收性能均差的问题。一种富勒烯/氧化再生纤维素复合止血材料由富勒烯和氧化再生纤维素制备的;制备方法:一、制备富勒烯的分散液;二、复合,得到富勒烯/氧化再生纤维素复合止血材料。使用本发明制备的富勒烯/氧化再生纤维素复合止血材料进行止血,止血时间降低了7.7%~10%。本发明可获得一种富勒烯/氧化再生纤维素复合止血材料及其制备方法。

    一种具有表层纳米结构的氧化再生纤维素类止血材料的制备方法

    公开(公告)号:CN102912622A

    公开(公告)日:2013-02-06

    申请号:CN201210424578.0

    申请日:2012-10-30

    摘要: 一种具有表层纳米结构的氧化再生纤维素类止血材料的制备方法,本发明涉及具有表层纳米结构的氧化再生纤维素类止血材料制备方法。本发明是要解决现有氧化纤维素止血材料比表面积小、不溶于水、止血作用机理单一和止血速度慢的问题,从而提供的一种具有表层纳米结构的氧化再生纤维素类止血材料的制备方法。方法:一、制备胶原蛋白水溶液;二、制备黏胶纤维纱布;三、制备氧化黏胶短纤及氧化黏胶纤维纱布;四、制备氧化再生纤维素钠溶液或氧化再生纤维素钾溶液;五、制备氧化再生纤维素纱布;六、喷涂胶原蛋白粒子后真空冷冻干燥即完成了具有表层纳米结构的氧化再生纤维素类止血材料的制备。本发明应用于氧化再生纤维素类止血材料的制备领域。

    一种氧化再生纤维素可吸收止血材料的制备方法

    公开(公告)号:CN102558368A

    公开(公告)日:2012-07-11

    申请号:CN201110422552.8

    申请日:2011-12-16

    IPC分类号: C08B15/04 A61L15/64 A61L15/28

    摘要: 一种氧化再生纤维素可吸收止血材料的制备方法,涉及一种氧化再生纤维素可吸收止血材料的制备方法。是要解决现有氧化再生纤维素可吸收止血材料的制备方法成本高,污染环境,反应过程难以控制,不适于产业化生产的问题。方法:将二氧化氮和环己烷加入到循环反应器中,再加入再生纤维素,密封反应器,反应得氧化产物;用环己烷冲洗氧化产物,用乙醇水溶液冲洗氧化产物,再用无水乙醇冲洗氧化产物;将氧化产物冷冻干燥,即得到氧化再生纤维素可吸收止血材料。本发明氧化再生纤维素可吸收止血材料氧化效率与传统溶剂相当,同时解决了环境污染、气候影响问题。反应过程容易控制,适于产业化生产。

    一种基于微液滴发生器阵列的3D打印装置

    公开(公告)号:CN114889122B

    公开(公告)日:2024-11-05

    申请号:CN202210354050.4

    申请日:2022-04-06

    摘要: 一种基于微液滴发生器阵列的3D打印装置,为了解决现有技术打印大幅面的工件,需要庞大的打印机及打印时间长的问题。本发明的激光器、安装板和打印平台由上至下水平设置,激光器安装在安装臂的底部,安装臂与立柱固定连接,安装板安装在转动机构的底部,转动机构与立柱铰接,立柱与工作箱体固定连接,打印平台安装在升降机构的升降杆上,升降机构安装在工作箱体的内部,微液滴发生器位于安装板与打印平台之间,安装板内部设置有输液孔,微液滴发生器通过输料管与输液孔连通,输液管的一端与输液孔连通,输液管的另一端与缓冲瓶连通,缓冲瓶通过管路与原料箱连通。本发明可同时打印多种材料组成的物体,多个打印头同时工作可大大缩短打印时间。