-
公开(公告)号:CN112523897A
公开(公告)日:2021-03-19
申请号:CN202011359960.9
申请日:2020-11-27
Applicant: 北京宇航系统工程研究所
Abstract: 一种异形贮箱出流装置,属于液体火箭增压输送系统技术领域。本发明的消漩板和分隔板安装在共底贮箱的出流口上,通过在消漩板上设置孔减小消漩板的结构载荷同时降低了其结构重量,同时通过孔的合理布局提高消漩板的承载能力,消漩板采用120°V形结构,使流体过渡尽可能平滑,同时使液体有向中心填补的趋势,盖板安装在共底贮箱出流口(贮箱轴向)上部,使液体有向下流(加速)的趋势,破坏形成漩涡的切向力,通过上述设置抑制漩涡及塌陷的发生,从而减少贮箱内液体的不可用量。
-
公开(公告)号:CN112446112A
公开(公告)日:2021-03-05
申请号:CN202011334440.2
申请日:2020-11-24
Applicant: 北京宇航系统工程研究所
IPC: G06F30/17 , G06F30/23 , G06F113/26 , G06F119/14 , G06F119/08
Abstract: 低温复合材料气瓶设计方法,一、设计铺层参数;二、利用网格理论计算气瓶的常温强度和低温强度,判断常温强度和低温强度是否满足要求,若不满足要求,返回一,若满足要求,则进入三;三、对气瓶建立有限元模型,计算气瓶常温和低温工作压力下内衬的应力状态、常温和低温零压力下内衬的稳定性,以及低温工作压力下缠绕层最外层纤维方向的应力,判断常温和低温工作压力下内衬Mises应力是否不超过材料的屈服极限;常温和低温零压力下内衬结构是否完整稳定;低温工作压力下缠绕层最外层纤维方向的应力是否不大于σd1/n;若是,则气瓶设计满足要求;否则,气瓶设计不满足要求,需要重新设计。本发明设计全面,能够保证气瓶性能满足要求。
-
公开(公告)号:CN111102416A
公开(公告)日:2020-05-05
申请号:CN202010038740.X
申请日:2020-01-14
Applicant: 北京宇航系统工程研究所 , 中国运载火箭技术研究院
Inventor: 李林 , 周宏 , 周浩洋 , 贺启林 , 霍毅 , 税晓菊 , 张翼 , 石佳 , 张萌 , 吴立夫 , 卫强 , 陈牧野 , 王儒文 , 武园浩 , 周冠宇 , 马方超 , 吴姮 , 尹文辉 , 牛沫雯
Abstract: 一种防涡旋流动的五通装置,包括六通和导流装置。六通包括空心球体、第一法兰和四个第二法兰,空心球体上冲压出第一过孔,以第一过孔为顶端,在空心球体侧面对称冲压出四个第二过孔,在底端加工第三过孔。第一法兰焊接在第一过孔处,形成进口;第二法兰焊接在第二过孔处,形成出口。导流装置包括流动面、十字隔板和底部柱状结构,流动面为圆锥状,锥顶上设计有十字隔板,十字隔板将流动面均分为四块区域,导流装置从第三过孔放入六通中并焊接,导流装置将四个出口流动区域分隔开,形成防涡旋流动的五通装置。本发明能够有效避免球体内形成“纺锤形”纵向涡旋,防止压力下降造成发动机端入口压力不足,消除飞行安全隐患。
-
公开(公告)号:CN109829218A
公开(公告)日:2019-05-31
申请号:CN201910056403.0
申请日:2019-01-22
Applicant: 北京宇航系统工程研究所 , 中国运载火箭技术研究院
IPC: G06F17/50
Abstract: 本发明提出了一种管路异质界面超声导波传播规律建模分析方法,所述管路包括直管和异质界面,所述方法包括以下步骤:步骤1、建立管路异质界面动力学显示有限元仿真模型;步骤2、获得超声导波在异质界面处的反射特征波形,以便于剔除该反射特征波形对管路损伤特征波形的影响。该分析方法建立了管路异质界面的有限元仿真模型,推导出超声导波在管路异质界面中传播的频散方程和模态转换关系,得到超声导波在异质界面处的反射特征波形,以便于剔除该反射特征波形对管路损伤特征波形的影响。
-
公开(公告)号:CN109695514A
公开(公告)日:2019-04-30
申请号:CN201811486460.4
申请日:2018-12-06
Applicant: 北京宇航系统工程研究所 , 中国运载火箭技术研究院
Abstract: 本发明涉及一种贮箱内燃烧快速增压系统,包括小贮箱和大贮箱,充气系统连接外部气源,充气系统、贮气系统、增压启动及过滤系统、增压调节系统、第一增压启闭系统、第一推进器隔离系统顺次连接至小贮箱,为小贮箱注入高压气体;小贮箱加注系统、单向阀隔离系统顺次连接至小贮箱,为小贮箱加注燃料A;小贮箱还设有小贮箱排气系统;小贮箱依次通过第二增压启闭系统、电动喷注阀、第二推进剂隔离系统连接至喷射装置;喷射装置封闭于大贮箱内,大贮箱内置燃料B,燃料A和燃料B燃烧产生高温燃气以增压。其利用自燃推进剂组元相互作用的原理,使得燃烧形成高温燃气对大贮箱进行快速增压。
-
公开(公告)号:CN103678879B
公开(公告)日:2016-08-17
申请号:CN201310577144.9
申请日:2013-11-18
Applicant: 北京宇航系统工程研究所 , 中国运载火箭技术研究院
IPC: G06F17/50
Abstract: 一种输送管载荷分析方法,本发明由任务剖面划分、输送管结构剖分、输送管前段和后段载荷计算、输送管前段和后段对接处载荷计算组成,首先将输送管任务剖面划分为装配、气检、燃料加注、射前增压、飞行五个工况,将输送管结构剖分为前段、后段,对输送管施加各工况下的内压和补偿位移,根据输送管中波纹管的刚度计算输送管载荷,所述的载荷包括轴向力、径向力和弯矩。
-
公开(公告)号:CN119720503A
公开(公告)日:2025-03-28
申请号:CN202411695536.X
申请日:2024-11-25
Applicant: 北京宇航系统工程研究所
IPC: G06F30/20 , G06F17/10 , G06F113/14 , G06F113/08 , G06F119/14 , G06F119/04
Abstract: 本发明公开了一种波纹管流致应力及疲劳寿命计算方法,包括:基于波纹管结构参数和介质参数,依次解算得到波纹管的各阶模态频率、各阶模态激发流速、1阶径向声学模态频率、介质的流速;进一步的,激发模态确定激发模态,并确定激发模态的激发流速;在此基础上,计算得到波纹管的应力;进一步的,根据声学共振结果,考虑一定的不确定度,对计算得到的波纹管的应力进行修正;最后,根据修正后的波纹管应力,计算得到波纹管每个激发模态下的疲劳损伤。本发明所述方法,可根据波纹管的结构尺寸和介质参数对激发模态进行判定,然后对流致应力进行估计,从而评估产生的波纹管疲劳损伤,解决了现有技术中无法考虑流体冲刷导致的振动和疲劳等问题。
-
公开(公告)号:CN112446112B
公开(公告)日:2023-07-14
申请号:CN202011334440.2
申请日:2020-11-24
Applicant: 北京宇航系统工程研究所
IPC: G06F30/17 , G06F30/23 , G06F113/26 , G06F119/14 , G06F119/08
Abstract: 低温复合材料气瓶设计方法,一、设计铺层参数;二、利用网格理论计算气瓶的常温强度和低温强度,判断常温强度和低温强度是否满足要求,若不满足要求,返回一,若满足要求,则进入三;三、对气瓶建立有限元模型,计算气瓶常温和低温工作压力下内衬的应力状态、常温和低温零压力下内衬的稳定性,以及低温工作压力下缠绕层最外层纤维方向的应力,判断常温和低温工作压力下内衬Mises应力是否不超过材料的屈服极限;常温和低温零压力下内衬结构是否完整稳定;低温工作压力下缠绕层最外层纤维方向的应力是否不大于σd1/n;若是,则气瓶设计满足要求;否则,气瓶设计不满足要求,需要重新设计。本发明设计全面,能够保证气瓶性能满足要求。
-
公开(公告)号:CN112395796B
公开(公告)日:2023-07-14
申请号:CN202011360003.8
申请日:2020-11-27
Applicant: 北京宇航系统工程研究所
Inventor: 方红荣 , 陈二锋 , 郑茂琦 , 薛立鹏 , 贺启林 , 叶超 , 王太平 , 周浩洋 , 王丛飞 , 张婷 , 满满 , 吕宝西 , 张连万 , 范瑞祥 , 程堂明 , 田玉蓉 , 张鹭
IPC: G06F30/23 , G06F30/15 , G06F119/04 , G06F119/14
Abstract: 本发明涉及考虑气液固耦合效应的蓄压器膜盒振动疲劳寿命分析方法,属于运载火箭蓄压器寿命分析领域;考虑气液固耦合效应的蓄压器膜盒振动疲劳寿命分析方法,主要采用声学单元建立蓄压器膜盒在膜盒内充气体、膜盒外充满推进剂液体的复杂工作环境下的有限元模型,通过有限元分析,获得膜盒结构的模态频率特性,以及振动载荷作用下膜盒结构的动态应力功率谱响应,然后结合损伤模型和材料S‑N曲线,计算蓄压器膜盒结构的疲劳寿命;本发明实现了对液体运载火箭输送管路中的蓄压器膜盒结构在气液固耦合的复杂环境下受振动载荷作用时的疲劳寿命进行有效的分析评估。
-
公开(公告)号:CN112483712B
公开(公告)日:2023-02-03
申请号:CN202011254966.X
申请日:2020-11-11
Applicant: 北京宇航系统工程研究所
Abstract: 本发明涉及一种防卡滞高密封性能电磁阀,包括电磁铁组件、焊接组件、柔性弹簧组件、锁紧螺母和壳体;壳体为中空结构,其内设置锥形阀座,壳体内部有限位台阶;柔性弹簧组件放置于壳体内部限位台阶上,与锥形阀座接触,通过自身弹力将非金属密封件与锥形阀座进行密封;柔性弹簧组件包括柔性弹簧和非金属密封件,柔性弹簧为圆形板式弹簧,非金属密封件通过热压固定在柔性弹簧中部上端;非金属密封件为π形结构,通过柔性弹簧自身拉力与锥形阀座连接,锥形阀座与π形密封面能够实现自适应对中,以提高密封性能。
-
-
-
-
-
-
-
-
-