-
公开(公告)号:CN101866983B
公开(公告)日:2014-09-03
申请号:CN201010173492.6
申请日:2010-05-10
Applicant: 北京交通大学
IPC: H01L31/18 , H01L31/0296
CPC classification number: Y02P70/521
Abstract: 一种n型掺杂ZnO薄膜的快速响应紫外探测器的制作方法,属于光电子信息领域,解决了ZnO光电导探测器响应速度比较慢的问题,它包括以下步骤:步骤一,用化学清洗方法将石英衬底清洗干净;步骤二,在清洗干净的石英衬底上生长Ga掺杂的ZnO薄膜;步骤三,将生长Ga掺杂的ZnO薄膜放入氧气氛下退火;步骤四,在退火后的Ga掺杂的ZnO薄膜上蒸镀两个Al电极;其结构自下而上依次是:石英衬底,Ga掺杂的ZnO薄膜、两个Al电极。Ga掺杂的ZnO薄膜组分质量比为Ga2O3∶ZnO=(0.5%~3%)∶(97%~99.5%)。可用于环境保护、火焰探测、天文学观测、生物医学和医疗卫生等领域。
-
公开(公告)号:CN102513533B
公开(公告)日:2013-07-03
申请号:CN201110456075.7
申请日:2011-12-30
Applicant: 北京交通大学
Abstract: 单层石墨烯/金纳米颗粒复合材料及其制备方法,涉及单层石墨烯及其衍生物制备领域,是一种在水溶液中制备单层石墨烯/金纳米颗粒复合材料的制备方法。适用于生物检测,有害气体探测等领域。解决了现有的制备方法繁杂、对所需设备要求高、使用有机物造成污染的问题。该复合材料的组份含量为:金纳米颗粒的质量分数为28%~50%;单层石墨烯的质量分数为50%~72%。该制备方法包括:步骤一利用高锰酸钾与浓硫酸混合氧化石墨制备单层氧化石墨烯溶液,并干燥成粉末;步骤二单层石墨烯/金纳米颗粒复合材料的悬浊液的制备;步骤三对步骤二中所得悬浊液进行离心,得到沉淀,即得到单层石墨烯/金纳米颗粒复合材料。
-
公开(公告)号:CN102532894A
公开(公告)日:2012-07-04
申请号:CN201210003652.1
申请日:2012-01-06
Applicant: 北京交通大学
Abstract: 一种氧化石墨/聚吡咯复合材料的制备方法,属于氧化石墨和导电高分子的复合材料技术。解决了复合材料的导电性、热稳定性、制作工艺、成本问题。其制备步骤:步骤一将氧化石墨加入到表面活性剂的掺杂酸溶液中超声分散,形成分散均匀的氧化石墨溶液;步骤二对一中所得溶液中加入吡咯单体,然后继续通过超声使其形成混合液;步骤三将加入氧化剂后形成的掺杂酸溶液逐滴缓慢的加入到步骤二形成的溶液中,搅拌聚合一段时间;步骤四最后加入醇溶液中止反应;步骤五将步骤四得到的混合液进行抽滤、洗涤真空烘干后得到氧化石墨/聚吡咯复合材料。可用在超级电容器电极材料、化学电源、传感器、环境、生命科学等领域有着较为强的应用前景和经济效益。
-
公开(公告)号:CN102527366A
公开(公告)日:2012-07-04
申请号:CN201210008265.7
申请日:2012-01-12
Applicant: 北京交通大学
IPC: B01J21/18
Abstract: 一种二氧化钛纳米管石墨烯混合光催化剂及制备方法,涉及一种光催化剂的制备方法。不但适用于环境保护领域,同样还使用于能源领域。解决了利用二氧化钛纳米颗粒混合石墨烯来制备催化剂,不能充分利用石墨烯的优良特性的问题。该催化剂为二氧化钛纳米管与石墨烯的质量百分比为97%∶3%~90%∶10%。该制备方法包括:配制二氧化钛、石墨烯及NaOH浑浊液体;对浑浊液体恒温处理,冷却后得到上清夜及沉淀物;除去上清液,得到沉淀物;洗涤沉淀物,直至pH为6~8;将洗涤后的沉淀物用3~7%盐酸浸泡1~3小时;洗涤沉淀物至pH为6~8;沉淀物在60℃~80℃的真空环境下烘干,得到银灰色粉末;煅烧处理后得到的产物即为二氧化钛纳米管石墨烯混合光催化剂。
-
公开(公告)号:CN101859878B
公开(公告)日:2012-05-30
申请号:CN201010184678.1
申请日:2010-05-20
Applicant: 北京交通大学
Abstract: 一种提高光输出耦合效率有机电致发光器件及其制备方法,它是在其器件的ITO玻璃衬底的玻璃面上制备一层厚度50nm~90nm的ZnS棒状纳米薄膜。其制备步骤:将有机电致发光器件的ITO玻璃衬底的玻璃面向下固定在衬底支架上;使衬底支架的法线方向与蒸发粒子流入射方向的夹角为85度,通过锁栓将电机支架与真空电机固定;将纯度99~99.9%的ZnS置于蒸发源中;对真空腔抽真空度2~8×10-6帕;加热ITO玻璃衬底到210~300℃;通过真空电机使ITO玻璃衬底的旋转速度为1~3转/分;给蒸发源加热,使蒸发速率为0.1~0.2纳米/秒。本发明提高了有机电致发光器件的光输出耦合效率。
-
公开(公告)号:CN102426921A
公开(公告)日:2012-04-25
申请号:CN201110457689.7
申请日:2011-12-30
Applicant: 北京交通大学
CPC classification number: Y02E60/13
Abstract: 一种超级电容器及其电解液的制备方法,属于化学电源技术领域。解决了传统有机系电解液内阻较高的问题,同时该超级电容器具有更高的能量密度和功率密度,显示出良好的循环特性。该超级电容器包括阳极、电解液、隔膜、电解液、阴极,在电解液中掺入不同质量的石墨烯,构成复合电解液。超级电容器的复合电解液的制备方法包括:步骤一,以四乙基四氟硼酸铵、四氟硼酸锂或高氯酸锂作为溶质,碳酸丙烯酯或乙腈作为溶剂,配制成浓度为0.5~1.5mol/L的前驱溶液;步骤二,在前驱溶液中加入石墨烯,配制成质量浓度为0.1~1mg/ml的混合液;步骤三,将步骤二制备的混合液放置于真空干燥箱中,真空度100~1000Pa,静置12~24h,制成超级电容器所述的复合电解液。
-
公开(公告)号:CN101586986B
公开(公告)日:2011-05-11
申请号:CN200910088435.5
申请日:2009-07-07
Applicant: 北京交通大学
Abstract: 一种光纤光栅波长解调系统,属于光纤传感、光学测量技术领域。该解调系统包括:宽带光源(1)、可调谐滤波器(2)、1×2耦合器、波长标定模块、光电探测器、1×N光开关(5)、信号处理系统。波长标定模块内部的连接为:标准具滤波器(6)一端接第三1×2耦合器(11)的一个输出端,标准具滤波器的另一端接参考光栅(10),第三1×2耦合器的输入端接第一1×2耦合器(7)的一个输出端;第三1×2耦合器的另一输出端经第二光电探测器(4)接入信号处理系统(9),实现波长标定。通过标准具滤波器和参考光栅可快速精确实现对反射回光纤光栅波长的标定,有效达到高精度解调出信号的目的。本系统可用于温度、应力等物理量的监测。
-
公开(公告)号:CN101964397A
公开(公告)日:2011-02-02
申请号:CN201010256417.6
申请日:2010-08-18
Applicant: 北京交通大学
CPC classification number: Y02E10/549
Abstract: 本发明公开了一种基于NPB和BND的紫外光探测器,属于光电子信息领域,主要用于天体物理分析,太阳辐射和大气臭氧层研究,环境监测及预报,医疗卫生等领域。本发明是在ITO导电玻璃阳极(4)上依次真空蒸镀空穴传输材料NPB与电子传输材料BND的功能层(3),氟化锂阴极修饰层(2)和铝金属薄膜阴极(1)。其中NPB和BND混合层的厚度为80~120nm,其质量比例4∶1。该紫外光探测器的探测范围为波长300~400nm的紫外光。该紫外光探测器具有成本低,工作电压低,简单易制,光电流产生的效率高,光电响应大的特点。
-
公开(公告)号:CN101913907A
公开(公告)日:2010-12-15
申请号:CN201010239668.3
申请日:2010-07-28
Applicant: 北京交通大学
IPC: C04B41/50 , C04B41/85 , C03C17/245 , C23C14/34
Abstract: 微纳结构的ZnO晶体材料由于其独特的结构和性能,体现出了特殊的应用潜力,近年在电子器件、光电子器件、化学传感、生物发电以及紫外检测等领域取得了重要应用。本发明提供了一种在衬底上制备生长位置精确可控的ZnO纳米/微米棒晶的方法。本发明首先在衬底上预修饰ZnO籽晶层,然后在衬底上制作图形尺寸在2μm以下的光刻胶层做模板层,之后使用含有柠檬酸钠和聚乙醇胺这两种不同生长修饰剂的前躯体溶液合成ZnO微纳棒晶,最终成功地在预修饰籽晶层的单晶、多晶或者无定形衬底上制备出了生长位置精确控制的ZnO纳米/微米棒晶。本发明实现了ZnO微纳晶体材料在衬底上的位置控制,是实现ZnO微纳晶体材料的器件化产业应用的必要步骤。
-
公开(公告)号:CN101866983A
公开(公告)日:2010-10-20
申请号:CN201010173492.6
申请日:2010-05-10
Applicant: 北京交通大学
IPC: H01L31/18 , H01L31/0296
CPC classification number: Y02P70/521
Abstract: 一种n型掺杂ZnO薄膜的快速响应紫外探测器的制作方法,属于光电子信息领域,解决了ZnO光电导探测器响应速度比较慢的问题,它包括以下步骤:步骤一,用化学清洗方法将石英衬底清洗干净;步骤二,在清洗干净的石英衬底上生长Ga掺杂的ZnO薄膜;步骤三,将生长Ga掺杂的ZnO薄膜放入氧气氛下退火;步骤四,在退火后的Ga掺杂的ZnO薄膜上蒸镀两个Al电极;其结构自下而上依次是:石英衬底,Ga掺杂的ZnO薄膜、两个Al电极。Ga掺杂的ZnO薄膜组分质量比为Ga2O3∶ZnO=(0.5%~3%)∶(97%~99.5%)。可用于环境保护、火焰探测、天文学观测、生物医学和医疗卫生等领域。
-
-
-
-
-
-
-
-
-