-
公开(公告)号:CN104492066B
公开(公告)日:2017-02-22
申请号:CN201410799839.6
申请日:2014-12-18
Applicant: 中国科学院自动化研究所
Abstract: 本发明公开了一种任务导向式主动训练控制方法,应用于康复机器人中,所述康复机器人具有传感装置、控制系统和驱动机构,控制系统用于接收传感装置采集的信号生成控制指令,并将控制指令发送给驱动机构,驱动机构可佩带于患者的身体部分,接收所述控制指令,根据控制指示施加并调节对患者身体部分的作用力,以对患者的康复训练进行控制,所述控制方法包括如下步骤:S1、检测患者身体部分的主动运动信号;S2、根据患者身体部分的主动运动信号,调节康复机器人的驱动机构对患者身体部分的作用力。
-
公开(公告)号:CN106096265B
公开(公告)日:2018-12-21
申请号:CN201610404708.2
申请日:2016-06-08
Applicant: 中国科学院自动化研究所
IPC: G16H50/50
Abstract: 本发明公开了一种针对虚拟微创血管手术的导丝建模方法,该方法包括:步骤1:对导丝进行离散化表示,得到导丝模型;步骤2:对所述导丝模型的参数进行初始化;步骤3:基于初始化的导丝模型参数,获得所述导丝模型的能量值;步骤4:基于所述步骤3得到的能量获得相应的力和力矩;步骤5:利用拉格朗日乘子式法实现所述导丝模型的不可拉伸约束,并计算出由该不可拉伸约束产生的约束力;步骤6:对所述步骤4和步骤5求得的力和力矩进行求和,并结合所述步骤4和步骤5求得的力和力矩,对所述导丝模型的参数进行更新;步骤7:循环调用步骤3~6来进行导丝的动态仿真。实验证明,本发明导丝模型能够逼真地、实时地模拟真实导丝的物理形变。
-
公开(公告)号:CN104492033B
公开(公告)日:2017-07-21
申请号:CN201410784548.X
申请日:2014-12-17
Applicant: 中国科学院自动化研究所
Abstract: 本发明公开了一种基于sEMG的单关节主动训练控制方法及相应的康复机器人,该单关节主动训练控制方法用于具有sEMG采集系统的康复机器人中,包括利用sEMG采集系统采集患者的sEMG信号,然后康复机器人利用所述sEMG信号转换为单关节主动训练控制信号,对患者的单关节主动训练进行控制。本发明方法包含两个策略,即阻尼式和弹簧式主动训练,前者利用sEMG控制关节运动速度;后者利用sEMG控制关节角位移。本发明简单灵活,能够实现对被试者主动运动意图的监督,并提供两种方式的下肢康复主动训练,能够提高患者的训练积极性,提高康复效率。
-
公开(公告)号:CN105892676A
公开(公告)日:2016-08-24
申请号:CN201610266180.7
申请日:2016-04-26
Applicant: 中国科学院自动化研究所
IPC: G06F3/01 , G06K9/00 , A61B5/0488 , A61B5/0492
CPC classification number: G06F3/015 , A61B5/0488 , A61B5/0492 , G06F3/017 , G06K9/00523
Abstract: 本发明公开了一种基于表面肌电的血管介入手术送丝机构的人机交互系统、装置和方法。该系统包括:主动导丝、第一电极片、手臂、第二电极片、肌电信号采集通道、肌电信号采集仪、从动导丝、送丝机构和控制装置;所述第一电极片用于贴在用户拇短展肌处;所述第二电极片用于贴在用户肱二头肌处;所述肌电信号采集仪用于采集肌电信号;所述控制装置根据所述肌电信号产生控制指令;所述送丝机构根据接收到的控制指令控制径向步进电机和轴向步进电机执行动作,所述径向步进电机用于旋转所述从动导丝,所述轴向步进电机用于推送所述从动导丝。本发明解决了血管介入机器人人机交互透明度差、手术效率低、改变了医生自然手术操作习惯等问题。
-
公开(公告)号:CN104644378A
公开(公告)日:2015-05-27
申请号:CN201510079091.7
申请日:2015-02-13
Applicant: 中国科学院自动化研究所
Abstract: 本发明提供的基于阻抗控制的康复训练方法,包括:将肢体按第一预定的运动轨迹进行训练,并监测所述肢体的异常肌肉活动信号;如果监测到所述肢体的异常肌肉活动信号,则确定当前的运动轨迹,并根据所述当前的运动轨迹进行训练;如果所述肢体的异常肌肉活动信号不存在,则将所述当前的运动轨迹通过预定的时间偏置的方式调整为第二预定的运动轨迹。本发明避免了在康复训练过程中的损伤。
-
-
-
-