-
公开(公告)号:CN107105297A
公开(公告)日:2017-08-29
申请号:CN201710357483.4
申请日:2017-05-19
Applicant: 华侨大学
IPC: H04N19/597 , H04N19/176 , H04N19/109 , H04N19/59
Abstract: 本发明公开了一种针对3D‑HEVC深度图帧内预测编码的快速优化方法,包括:对当前编码块CU计算其像素方差以及对角像素差的绝对值之和,根据当前编码块的方差以及对角像素差值的绝对值之和设定阈值,通过阈值比较,判定是否提前终止当前CU的深度划分;根据当前预测块PU外圈像素差的绝对值之和,设定阈值,通过阈值比较当前预测块PU是否属于平滑类型,从而跳过SDC编码,进一步降低计算复杂度。本发明能够在保持3D‑HEVC编码效率的前提下,有效地降低深度图帧内预测编码计算复杂度。
-
公开(公告)号:CN106960176A
公开(公告)日:2017-07-18
申请号:CN201710096262.6
申请日:2017-02-22
Applicant: 华侨大学
Abstract: 本发明一种基于超限学习机和颜色特征融合的行人性别识别方法,包括:提取未标记性别属性的训练图像的超限学习机特征;提取未标记性别属性的输入训练图像HSV颜色特征,将超限学习机特征与颜色特征进行组合,获得融合特征,根据融合特征和训练图像标签利用线性支持向量机SVM训练行人性别分类器;利用训练所得模型提取测试图像特征,同时提取其HSV颜色特征,接着将两类特征进行融合,获得测试图像的融合特征,用训练过程所得线性支持向量机SVM行人性别分类器对融合特征进行分类。本发明对输入图像提取超限学习特征与颜色特征并进行有效融合,实现两种特征的互补,更有效地捕捉行人性别属性,从而提高行人性别识别率。
-
公开(公告)号:CN106780452A
公开(公告)日:2017-05-31
申请号:CN201611114594.4
申请日:2016-12-07
Applicant: 华侨大学
CPC classification number: G06T7/0002 , G06T2207/20164 , G06T2207/30168
Abstract: 本发明涉及一种结合小波和角点特征的全参考屏幕图像质量评估方法。该方法首先分别提取参考屏幕图像和失真屏幕图像的角点特征相似性图,并以小波变换系数幅值来权衡参考屏幕图像的视觉敏感度,基于该视觉敏感度对角点特征相似性图进行加权融合,从而计算得到失真屏幕图像质量分数。本发明充分利用了角点特征对于图像局部结构的描述能力且考虑到了人眼视觉感知对屏幕图像中不同区域的视觉敏感程度不同,具有较好的屏幕图像质量评估性能,且计算简单。
-
公开(公告)号:CN119544430B
公开(公告)日:2025-04-29
申请号:CN202510080480.5
申请日:2025-01-20
Applicant: 华侨大学
IPC: H04L27/00 , G06N3/0442
Abstract: 本发明公开了一种基于深度学习的非相干混沌通信方法及装置,涉及数据处理领域,包括:获取待解调的混沌接收信号并进行功率谱密度估计,得到PSD序列并输入到经训练的混沌接收信号解调模型,通过输入层接收PSD序列,PSD序列经过第一BiLSTM层,提取到PSD序列的第一时域特征,再经过自注意力层,得到第一中间特征,第一中间特征经过第一Dropout层,得到第二中间特征,第二中间特征经过第二BiLSTM层,提取得到PSD序列的第二时域特征,再经过第二Dropout层,得到第三中间特征;将第三中间特征输入到全连接层和Softmax层进行特征整合,得到概率分布向量,概率分布向量通过分类层进行最大似然判决,得到估计的二进制信息比特。本发明解决现有的混沌通信系统频谱效率低的问题。
-
公开(公告)号:CN119648117A
公开(公告)日:2025-03-18
申请号:CN202510169101.X
申请日:2025-02-17
Applicant: 华侨大学
IPC: G06Q10/0875 , G06K17/00 , G06K7/10 , G06N3/0464 , G06T7/00 , G06T7/90
Abstract: 本发明公开了一种基于机器视觉的石材版面智能仓储管理方法及系统,涉及图像处理技术领域,方法包括:通过机器视觉检测石材版面的瑕疵并计算异常得分,进行异常排序与评级,获得每个石材版面的瑕疵评级;将RGB图像归一化为正则RGB,并进行伽玛矫正线性化转换至CIELAB颜色空间,计算石材版面的均色LAB;基于瑕疵评级和均色LAB信息录入RFID标签,并据此分类入库;接收用户对石材版面数量、瑕疵评级和均色的要求,筛选出最相似的石材版面反馈给用户;用户可选择接受或拒绝,若拒绝则重新筛选。本申请通过机器视觉检测石材版面的瑕疵和色差,结合RFID标签实现自动化入库、分类管理和精准出库,提高了仓储效率和管理精度。
-
公开(公告)号:CN119316609B
公开(公告)日:2025-02-25
申请号:CN202411837846.0
申请日:2024-12-13
Applicant: 华侨大学
IPC: H04N19/53 , G06N3/0464 , H04N19/80
Abstract: 本发明公开了一种基于自注意力机制的端到端视频压缩方法及系统,涉及视频编码领域,方法包括:提取当前帧、运动参考帧和上一时刻的重构帧的浅层特征;提取当前帧和运动参考帧之间的运动信息特征;压缩运动信息特征,获得压缩后的运动信息特征;将压缩后的运动信息特征补偿在上一时刻的重构帧的浅层特征上,获得当前时刻的上下文信息特征;压缩获得压缩后的上下文信息特征;将压缩后的上下文信息特征和当前帧的浅层特征融合特征进行编码,获得当前时刻的重构帧;对当前时刻的重构帧进行上采样,获得压缩视点图像;对压缩视点图像中的运动信息累积误差进行修正,得到下一帧的运动参考帧。本发明能够在提高运动估计的准确性的同时提升了编码的效率。
-
公开(公告)号:CN119152215B
公开(公告)日:2025-02-25
申请号:CN202411667235.6
申请日:2024-11-21
Applicant: 华侨大学 , 厦门松霖科技股份有限公司
Abstract: 本发明公开了一种基于梯度显著性感知的皱纹分割方法、装置及可读介质,涉及图像处理领域,包括:构建人脸皱纹数据集和人脸皱纹分割网络;将人脸皱纹数据集中的原始人脸图像输入到人脸皱纹分割网络,得到对应的皱纹分割预测图,计算原始人脸图像中的每个像素点的显著性,进一步计算得到原始人脸图像中的每个像素点的权重,基于原始人脸图像中的每个像素点的像素值及其权重和原始人脸图像对应的皱纹标注掩码图中的相应像素点的像素值构建梯度显著性加权损失函数,基于梯度显著性加权损失函数对人脸皱纹分割网络进行训练,得到经训练的人脸皱纹分割网络。本发明解决现有技术的人脸图像中皱纹被过度分割或错误分割的问题。
-
公开(公告)号:CN119444804A
公开(公告)日:2025-02-14
申请号:CN202510037837.1
申请日:2025-01-10
Applicant: 华侨大学
Abstract: 本发明涉及图像处理技术领域,提出了一种基于动态自适应和强化特征的多目标跟踪分割方法及系统,方法包括前处理步骤、外观代价计算步骤、预匹配步骤、运动代价计算步骤、正式匹配步骤、后处理步骤、重复步骤和可视化步骤。该方法通过具有动态自适应的数据关联对目标特征进行细化整合,以及利用基于掩码的注意力机制和基于四三角形变的掩码预测分别强化目标外观特征和运动信息,以能够在保持高跟踪精度的同时,实现快速运算和低成本运行,适用于更广泛的应用场景。
-
公开(公告)号:CN119027845B
公开(公告)日:2025-02-14
申请号:CN202411514321.3
申请日:2024-10-29
Applicant: 华侨大学 , 泉州圣源警用侦察设备有限公司
IPC: G06V20/17 , G06V10/25 , G06V10/764 , G06V10/77 , G06V10/774 , G06V10/80
Abstract: 本发明涉及图像处理与人工智能技术领域,公开了一种无人机森林火灾风险区块检测方法及系统,方法包括:构建基于区块分类的目标检测模型并进行训练,利用训练好的基于区块分类的目标检测模型实现无人机森林火灾风险区块检测;所述基于区块分类的目标检测模型利用区块映射器无人机图像中的不同区块映射为区块特征;利用多阶段采样网络对区块特征进行多种尺度的采样,并利用降维映射层进行尺度对齐,获得多尺度区块特征;通过哈达玛积融合多尺度区块特征,利用区块分类器将融合后的多尺度区块特征映射至区块类别概率。本发明以区域分类方式实现风险区块的定位,避免了现有技术因精确定位导致的庞大计算量,延长无人机可用时间。
-
公开(公告)号:CN119068266A
公开(公告)日:2024-12-03
申请号:CN202411551042.4
申请日:2024-11-01
Applicant: 华侨大学 , 泉州圣源警用侦察设备有限公司
IPC: G06V10/764 , G06V10/74 , G06V10/774 , G06V10/82 , G06V20/52 , G06F17/16
Abstract: 本发明涉及图像处理与目标识别技术领域,公开了一种基于真伪标签一致性的跨模态行人再辨识方法及系统,方法包括:通过深度神经网络对可见光与红外光两种不同模态的行人图像提取特征向量;计算同模态、不同模态间的特征向量相似度,构建同模态、跨模态匹配矩阵,并进行归一化处理,生成同模态和跨模态归一化匹配矩阵;采用跨模态归一化匹配矩阵和同模态归一化匹配矩阵对真实标签进行投影,获得跨模态伪标签;优化真实标签与跨模态伪标签之间的Kullback‑Leibler(KL)散度,从而优化同模态和跨模态匹配矩阵,提升匹配矩阵对模态变化的鲁棒性,从而提升跨模态行人再辨识准确性。
-
-
-
-
-
-
-
-
-