基于掩膜引导双流网络的行人重识别方法及装置

    公开(公告)号:CN118799923B

    公开(公告)日:2024-12-24

    申请号:CN202411282680.0

    申请日:2024-09-13

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于掩膜引导双流网络的行人重识别方法及装置,涉及图像识别领域,构建行人重识别模型、第一教师模型和第二教师模型,行人重识别模型包括轮廓单元和暴露单元,将轮廓空间注意力模块作为第一学生模型并与第一教师模型进行蒸馏学习,构造轮廓流中由掩码引导的注意力损失;将暴露空间注意力模块作为第二学生模型并与第二教师模型进行蒸馏学习,构造暴露流中由掩码引导的注意力损失;构造面部信息损失和REID损失;根据轮廓流中由掩码引导的注意力损失、暴露流中由掩码引导的注意力损失、面部信息损失和REID损失构造总损失函数并对行人重识别模型进行训练,得到经训练的行人重识别模型以进行行人重识别,解决背景和衣服因素的干扰问题。

    基于掩膜引导双流网络的行人重识别方法及装置

    公开(公告)号:CN118799923A

    公开(公告)日:2024-10-18

    申请号:CN202411282680.0

    申请日:2024-09-13

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于掩膜引导双流网络的行人重识别方法及装置,涉及图像识别领域,构建行人重识别模型、第一教师模型和第二教师模型,行人重识别模型包括轮廓单元和暴露单元,将轮廓空间注意力模块作为第一学生模型并与第一教师模型进行蒸馏学习,构造轮廓流中由掩码引导的注意力损失;将暴露空间注意力模块作为第二学生模型并与第二教师模型进行蒸馏学习,构造暴露流中由掩码引导的注意力损失;构造面部信息损失和REID损失;根据轮廓流中由掩码引导的注意力损失、暴露流中由掩码引导的注意力损失、面部信息损失和REID损失构造总损失函数并对行人重识别模型进行训练,得到经训练的行人重识别模型以进行行人重识别,解决背景和衣服因素的干扰问题。

    一种视频目标编辑方法、终端设备及存储介质

    公开(公告)号:CN117294894A

    公开(公告)日:2023-12-26

    申请号:CN202311150398.2

    申请日:2023-09-07

    Applicant: 华侨大学

    Abstract: 本发明提供一种视频目标编辑方法、终端设备及存储介质,方法包括:获取视频信息、目标编辑操作、目标编号和视频目标参数;使用视频实例分割算法对视频中的帧图像进行目标分割,得到目标的像素级信息;输出对应操作和编号的相应图片列表,根据目标编辑操作,输出原帧列表、目标二值掩码列表、平移目标帧列表、平移目标二值掩码列表、缩放目标帧列表或缩放目标二值掩码列表;使用视频图像修复算法对视频画面进行修复,根据目标编辑操作,输出删除修复视频、平移修复视频列表或缩放修复视频。本发明能够更方便、高效及精确地实现视频目标编辑。

    基于机器视觉的石材版面智能仓储管理方法及系统

    公开(公告)号:CN119648117A

    公开(公告)日:2025-03-18

    申请号:CN202510169101.X

    申请日:2025-02-17

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于机器视觉的石材版面智能仓储管理方法及系统,涉及图像处理技术领域,方法包括:通过机器视觉检测石材版面的瑕疵并计算异常得分,进行异常排序与评级,获得每个石材版面的瑕疵评级;将RGB图像归一化为正则RGB,并进行伽玛矫正线性化转换至CIELAB颜色空间,计算石材版面的均色LAB;基于瑕疵评级和均色LAB信息录入RFID标签,并据此分类入库;接收用户对石材版面数量、瑕疵评级和均色的要求,筛选出最相似的石材版面反馈给用户;用户可选择接受或拒绝,若拒绝则重新筛选。本申请通过机器视觉检测石材版面的瑕疵和色差,结合RFID标签实现自动化入库、分类管理和精准出库,提高了仓储效率和管理精度。

    掩模与语义协同优化扩散模型的石材表面瑕疵检测方法

    公开(公告)号:CN119477922A

    公开(公告)日:2025-02-18

    申请号:CN202510067481.6

    申请日:2025-01-16

    Applicant: 华侨大学

    Abstract: 本发明提供掩模与语义协同优化扩散模型的石材表面瑕疵检测方法,属于瑕疵检测领域,包括:获取数据集;将输入图片输入编码器以得到输入表征,对输入表征进行高斯噪声向前扩散得到全噪声表征;将各输入表征与掩模图片点乘后输入掩模引导的知识提炼网络以生成掩模表征;将输入表征输入含多维特征金字塔的语义引导增强网络以得到语义表征;将全噪声表征、掩膜表征和语义表征进行拼接后,进行反向扩散以逐步去除噪声,并解码生成重建图片;将输入图片及其对应的重建图片均输入特征提取网络,进而计算得到异常得分;根据异常得分进行排序并形成异常得分列表,将异常得分列表对应的输入图片的热力图反馈至用户。本发明能够有效提升对瑕疵的检测精度。

    基于多目标跟踪的流行病调查预测方法、装置及可读介质

    公开(公告)号:CN117476250A

    公开(公告)日:2024-01-30

    申请号:CN202311764347.9

    申请日:2023-12-21

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于多目标跟踪的流行病调查预测方法、装置及可读介质,涉及图像处理领域,包括:获取目标场景区域的视频数据并进行目标检测以及目标跟踪,得到多目标跟踪结果;基于多目标跟踪结果构建目标场景区域中出现的人员在每个时间步所对应的接触网络;构建当前时间步所对应的传染病动力学模型,若存在感染者,则获取感染者在下个时间步的轨迹数据,根据感染者在下个时间步的轨迹数据和下个时间步的接触网络动态调整当前时间步所对应的传染病动力学模型,得到下个时间步所对应的传染病动力学模型,确定下个时间步的感染者的接触者及其轨迹数据,以解决现有模型无法精确模拟出感染者以及接触者的活动空间的问题。

    掩模与语义协同优化扩散模型的石材表面瑕疵检测方法

    公开(公告)号:CN119477922B

    公开(公告)日:2025-04-22

    申请号:CN202510067481.6

    申请日:2025-01-16

    Applicant: 华侨大学

    Abstract: 本发明提供掩模与语义协同优化扩散模型的石材表面瑕疵检测方法,属于瑕疵检测领域,包括:获取数据集;将输入图片输入编码器以得到输入表征,对输入表征进行高斯噪声向前扩散得到全噪声表征;将各输入表征与掩模图片点乘后输入掩模引导的知识提炼网络以生成掩模表征;将输入表征输入含多维特征金字塔的语义引导增强网络以得到语义表征;将全噪声表征、掩膜表征和语义表征进行拼接后,进行反向扩散以逐步去除噪声,并解码生成重建图片;将输入图片及其对应的重建图片均输入特征提取网络,进而计算得到异常得分;根据异常得分进行排序并形成异常得分列表,将异常得分列表对应的输入图片的热力图反馈至用户。本发明能够有效提升对瑕疵的检测精度。

    基于多目标跟踪的流行病调查预测方法、装置及可读介质

    公开(公告)号:CN117476250B

    公开(公告)日:2024-03-12

    申请号:CN202311764347.9

    申请日:2023-12-21

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于多目标跟踪的流行病调查预测方法、装置及可读介质,涉及图像处理领域,包括:获取目标场景区域的视频数据并进行目标检测以及目标跟踪,得到多目标跟踪结果;基于多目标跟踪结果构建目标场景区域中出现的人员在每个时间步所对应的接触网络;构建当前时间步所对应的传染病动力学模型,若存在感染者,则获取感染者在下个时间步的轨迹数据,根据感染者在下个时间步的轨迹数据和下个时间步的接触网络动态调整当前时间步所对应的传染病动力学模型,得到下个时间步所对应的传染病动力学模型,确定下个时间步的感染者的接触者及其轨迹数据,以解决现有模型无法精确模拟出感染者以及接触者的活动空间的问题。

Patent Agency Ranking