一种无人机森林火灾风险区块检测方法及系统

    公开(公告)号:CN119027845A

    公开(公告)日:2024-11-26

    申请号:CN202411514321.3

    申请日:2024-10-29

    Abstract: 本发明涉及图像处理与人工智能技术领域,公开了一种无人机森林火灾风险区块检测方法及系统,方法包括:构建基于区块分类的目标检测模型并进行训练,利用训练好的基于区块分类的目标检测模型实现无人机森林火灾风险区块检测;所述基于区块分类的目标检测模型利用区块映射器无人机图像中的不同区块映射为区块特征;利用多阶段采样网络对区块特征进行多种尺度的采样,并利用降维映射层进行尺度对齐,获得多尺度区块特征;通过哈达玛积融合多尺度区块特征,利用区块分类器将融合后的多尺度区块特征映射至区块类别概率。本发明以区域分类方式实现风险区块的定位,避免了现有技术因精确定位导致的庞大计算量,延长无人机可用时间。

    一种无人机森林火灾风险区块检测方法及系统

    公开(公告)号:CN119027845B

    公开(公告)日:2025-02-14

    申请号:CN202411514321.3

    申请日:2024-10-29

    Abstract: 本发明涉及图像处理与人工智能技术领域,公开了一种无人机森林火灾风险区块检测方法及系统,方法包括:构建基于区块分类的目标检测模型并进行训练,利用训练好的基于区块分类的目标检测模型实现无人机森林火灾风险区块检测;所述基于区块分类的目标检测模型利用区块映射器无人机图像中的不同区块映射为区块特征;利用多阶段采样网络对区块特征进行多种尺度的采样,并利用降维映射层进行尺度对齐,获得多尺度区块特征;通过哈达玛积融合多尺度区块特征,利用区块分类器将融合后的多尺度区块特征映射至区块类别概率。本发明以区域分类方式实现风险区块的定位,避免了现有技术因精确定位导致的庞大计算量,延长无人机可用时间。

    基于区块类别编码的电缆图像分割方法及装置

    公开(公告)号:CN119339084B

    公开(公告)日:2025-03-25

    申请号:CN202411836240.5

    申请日:2024-12-13

    Abstract: 本发明公开了一种基于区块类别编码的电缆图像分割方法及装置,涉及图像处理领域,包括:构建电缆图像分割模型和区块编码模块,将电缆分割训练数据中的图像数据输入到语义分割编码器,得到区块特征,将区块特征输入到语义分割解码器,得到语义类别概率,基于语义类别概率和语义类别标签构建语义分割损失函数,将语义类别标签输入到区块编码模块,得到区块类别标签,基于语义类别概率和区块类别标签构建相关性匹配损失函数,并计算得到总损失函数,基于总损失函数对电缆图像分割模型进行训练,得到经训练的电缆图像分割模型;利用经训练的电缆图像分割模型进行图像分割。本发明解决目前电缆图像分割技术中分割不完整、准确率低的问题。

    基于区块类别编码的电缆图像分割方法及装置

    公开(公告)号:CN119339084A

    公开(公告)日:2025-01-21

    申请号:CN202411836240.5

    申请日:2024-12-13

    Abstract: 本发明公开了一种基于区块类别编码的电缆图像分割方法及装置,涉及图像处理领域,包括:构建电缆图像分割模型和区块编码模块,将电缆分割训练数据中的图像数据输入到语义分割编码器,得到区块特征,将区块特征输入到语义分割解码器,得到语义类别概率,基于语义类别概率和语义类别标签构建语义分割损失函数,将语义类别标签输入到区块编码模块,得到区块类别标签,基于语义类别概率和区块类别标签构建相关性匹配损失函数,并计算得到总损失函数,基于总损失函数对电缆图像分割模型进行训练,得到经训练的电缆图像分割模型;利用经训练的电缆图像分割模型进行图像分割。本发明解决目前电缆图像分割技术中分割不完整、准确率低的问题。

    掩模与语义协同优化扩散模型的石材表面瑕疵检测方法

    公开(公告)号:CN119477922B

    公开(公告)日:2025-04-22

    申请号:CN202510067481.6

    申请日:2025-01-16

    Applicant: 华侨大学

    Abstract: 本发明提供掩模与语义协同优化扩散模型的石材表面瑕疵检测方法,属于瑕疵检测领域,包括:获取数据集;将输入图片输入编码器以得到输入表征,对输入表征进行高斯噪声向前扩散得到全噪声表征;将各输入表征与掩模图片点乘后输入掩模引导的知识提炼网络以生成掩模表征;将输入表征输入含多维特征金字塔的语义引导增强网络以得到语义表征;将全噪声表征、掩膜表征和语义表征进行拼接后,进行反向扩散以逐步去除噪声,并解码生成重建图片;将输入图片及其对应的重建图片均输入特征提取网络,进而计算得到异常得分;根据异常得分进行排序并形成异常得分列表,将异常得分列表对应的输入图片的热力图反馈至用户。本发明能够有效提升对瑕疵的检测精度。

    面向局部运动模糊的图像超分辨率方法及装置

    公开(公告)号:CN119599875B

    公开(公告)日:2025-04-11

    申请号:CN202510138336.2

    申请日:2025-02-08

    Applicant: 华侨大学

    Abstract: 本发明公开了一种面向局部运动模糊的图像超分辨率方法及装置,涉及图像处理领域,包括:获取待重建的低分辨率图像并输入到经训练的图像超分辨率模型,低分辨率图像输入到图像选择模块,得到图像分组标签,图像分组标签包括正标签和负标签,正标签与模糊图像块相对应,负标签与其他图像块相对应;根据图像分组标签分别将正标签相对应的模糊图像块以及负标签相对应的其他图像块输入到正标签特征提取分支和负标签特征提取分支,得到正标签特征和负标签特征,正标签特征和负标签特征经过拼接层进行拼接,得到图像特征;图像特征经过图像重建模块,重建得到对应的高分辨率图像。本发明解决了局部运动模糊图像在超分辨率重建中性能差和效率低的问题。

Patent Agency Ranking