-
公开(公告)号:CN102375332B
公开(公告)日:2013-07-17
申请号:CN201010258142.X
申请日:2010-08-19
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种用于MEMS结构的悬架光刻胶平坦化工艺,首先将自组装方法制作的光刻胶薄膜粘覆转移于存在沟槽或间隙的半导体材料表面形成平整的悬架光刻胶结构,曝光显影以选择性去除不需要部位的光刻胶膜并坚膜,之后在室温条件下在光刻胶表面沉积金属或其它半导体材料层以实现其结构的平坦化工艺,最后对沉积的材料层刻蚀形成结构和图形。该方法有别于传统的平坦化工艺,利用自组装的方法将平坦化和光刻工艺结合在了一起,方法简单、材料节约、成本低廉、对设备要求低。
-
公开(公告)号:CN102923642A
公开(公告)日:2013-02-13
申请号:CN201210442204.1
申请日:2012-11-07
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: B81C1/00
Abstract: 本发明提供一种高深宽比硅结构的侧壁平滑方法,先在硅衬底表面形成氧化硅掩膜,然后根据氧化硅掩膜于硅衬底中制作高深宽比硅结构,接着采用感应耦合等离子体增强化学气相沉积法或喷涂法于所述高深宽比硅结构侧壁形成含氟聚合物,最后去除氧化硅掩膜完成制备。本发明具有以下有益效果:1)本发明工艺简单,可控性强,且与现有半导体工艺完全兼容;2)本发明可实现对原结构完美薄膜包覆,快速提高侧壁的平滑度,且不影响高深宽比硅结构;3)特别适用于传感器件,模具或微流体沟道的应用场合,当高深宽比硅结构用作模具时,疏水性聚合物薄膜的沉积更利于脱模。
-
公开(公告)号:CN102879609A
公开(公告)日:2013-01-16
申请号:CN201210418979.5
申请日:2012-10-26
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01P15/125 , B81C1/00
CPC classification number: G01P15/125 , B32B37/16 , B32B38/0008 , B32B38/10 , B32B2307/20 , B32B2307/202 , B32B2307/206 , B32B2310/0881 , B32B2310/14 , B32B2457/16 , G01P1/00 , G01P15/0802 , G01P2015/0822
Abstract: 本发明提供一种“H”形梁的电容式加速度传感器及制备方法。该传感器至少包括:第一电极结构层、中间结构层及第二电极结构层;其中,第一电极结构层与第二电极结构层分别设置有电极引出通孔;所述中间结构层包括:形成在具有双器件层的含氧硅基片的边框、双面对称的质量块、及一根梁连接边框、另一根梁连接质量块且双面对称的“H”形弹性梁,在两质量块的两面对称地设有防过载凸点及阻尼调节槽,且“H”形弹性梁与含氧硅基片的体硅层间满足条件: a和c为两根梁的宽度,b为两根梁之间的间隙,d为梁与质量块连接处的连接宽度,h为体硅层厚度。本发明的制备方法简单,成品率高;形成的器件具有高度法向的对称性,抗侧向冲击和扭转冲击的能力强,交叉灵敏度低。
-
公开(公告)号:CN101932146B
公开(公告)日:2012-10-17
申请号:CN201010278511.1
申请日:2010-09-10
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种具有圆弧形凹槽加热膜区的三维微型加热器及其制作方法,其特征在于横截面呈圆弧形结构的凹槽形加热膜区通过支撑悬梁与衬底框架相连,加热电阻丝以折线或曲线的形式排布在加热膜区凹槽的内部并通过支撑悬梁上的引线与衬底框架上的电极相连,在加热膜区和支撑悬梁下方是隔热腔体。本发明提供的加热器的加热电阻丝排布在具有三维结构的中心加热膜区的凹槽内部,对流换热引起的热量散失较小,可以有效降低加热器的功耗。圆弧形结构的凹槽形加热膜区避免了转角的存在,使得热应力在加热膜区内均匀分布,从而提高了加热器在高温下的机械强度。
-
公开(公告)号:CN102142362B
公开(公告)日:2012-10-10
申请号:CN201010104413.6
申请日:2010-02-02
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/033
Abstract: 本发明提供一种利用金属化合物的电泳沉积图案进行光刻的方法,首先在待进行光刻的半导体材料结构上制备金属薄膜,然后将两片沉积有金属薄膜的半导体材料结构相对固定在预设浓度的金属化合物胶粒溶液中,并将两者分别连接到电源的正负两极,以使所述金属化合物胶粒在所述半导体材料结构上发生单层电泳沉积,进而形成纳米沉积胶粒图案,再将该半导体材料结构自金属化合物胶粒溶液中取出去除水分后,进行干法刻蚀以在半导体材料结构表面形成纳米颗粒图形,最后将刻蚀后的半导体材料结构湿法化学腐蚀以去除沉积胶粒以及其下的各无需材料层,以形成纳米岛图形,此工艺过程简单,成本低廉、参数可控、环境友好、且去除方便。
-
公开(公告)号:CN102680917A
公开(公告)日:2012-09-19
申请号:CN201210134030.2
申请日:2012-04-28
Applicant: 中国科学院上海微系统与信息技术研究所
CPC classification number: G01R33/028 , G01R31/2884 , G01R33/0286
Abstract: 本发明提供一种微机械磁场传感器及其制备方法,属于微机电系统领域。该方法通过在器件结构层上制作出金属线圈及焊盘,然后利用干法刻蚀制作出器件结构,并将器件结构进行释放以形成谐振振子。本发明提出的微机械磁场传感器的谐振振子工作在扩张模态,因而金属线圈上每小段金属切割磁感线产生感应电动势会相互叠加,增强了输出信号的强度。此外,本发明所述的微机械磁场传感器具有低功耗、驱动-检测电路简单、受温度影响小、以及工艺简单等优点,具有高度的产业价值。
-
公开(公告)号:CN102674240A
公开(公告)日:2012-09-19
申请号:CN201210170049.2
申请日:2012-05-29
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种微机械传感器及其制作方法,采用湿法硅腐蚀技术在硅衬底中刻蚀出两倒梯形结构的深腔以及其所夹的正梯形结构的硅块,通过圆片键合技术实现敏感膜和硅块的物理连接,然后通过对硅衬底底部进行刻蚀使所述硅块底部悬空作为质量块,接着采用真空键合实现质量块的密封,最后在敏感膜上制备敏感结构和电极以完成制备。采用湿法硅腐蚀技术有利于降低微机械传感器的制造成本;由于敏感膜和梯形质量块长度较短的一边连接,减少了敏感膜和质量块的连接长度,有利于微机械传感器的尺寸的减小;由于硅块为梯形结构,和传统制作工艺相比,本发明提出的微机械传感器的质量块重量得到提高,有利于提高传感器的性能。
-
公开(公告)号:CN102642801A
公开(公告)日:2012-08-22
申请号:CN201210127069.1
申请日:2012-04-27
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供了一种双面平行对称梁质量块结构及其制备方法,属于微电子机械系统领域,该方法通过利用双面正反对准光刻工艺在双抛(100)硅片上形成双面平行对称梁质量块图形区域,然后进行干法刻蚀和湿法各向异性刻蚀,悬臂梁的(111)面作为腐蚀终止面,自动终止硅悬臂梁的腐蚀,最终形成双面平行对称梁质量块结构。该制备方法工艺简单,可以对双面平行对称梁质量块结构尺寸进行精确控制,使得梁质量块结构的制造成品率大大提高。本发明制备的器件在法向具有高度对称性,提高了器件抗侧向冲击和扭转冲击的能力,降低了交叉灵敏度,可应用于多种MEMS器件的结构中,如电容式加速度传感器、电阻式加速度传感器、微机械陀螺等。
-
公开(公告)号:CN102485639A
公开(公告)日:2012-06-06
申请号:CN201110298262.7
申请日:2011-09-28
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: B81C1/00
Abstract: 本发明提供一种基于金诱导非晶硅结晶的低温键合方法,首先在上基板的键合面上制备出氧化硅层,在氧化硅层上依次蒸发或溅射出钛、金膜,并去除非键合区域的钛、金膜;其次在下基板的键合面上制备出氧化硅层及非晶硅层,在非晶硅层上依次蒸发或溅射钛、金膜,并去除非键合区域的所述非晶硅层、及钛、金膜;然后,将上、下基板的键合面对准并贴合后,送入键合机,升温至250~300℃,并施加0.2~0.4MPa的压力,冷却到室温;最后,将从键合机取出的键合至一起的上、下基板送入退火炉,退火3~12小时,冷却到室温,完成金诱导非晶硅结晶的低温键合。本发明的低温键合方法不仅适用于硅圆片的键合,还可以用于非硅圆片的键合,并且由于低温的特性,具有很广的应用范围。
-
公开(公告)号:CN101493574B
公开(公告)日:2011-08-03
申请号:CN200810204560.3
申请日:2008-12-15
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G02B26/00
Abstract: 本发明涉及一种微机械推拉式可调谐光栅,其特征在于所述的微机械推拉式可调谐光栅包括光栅条阵列、光栅链接梁、光栅支撑梁以及所连接的推驱动器和拉驱动器,其中,光栅条阵列通过光栅链接梁相连后构成光栅本体,再通过光栅支撑梁与推驱动器和拉驱动器相连构成微机械推拉式可调谐光栅;所述的推驱动器或拉驱动器位于光栅本体的一侧或两侧;光栅链接梁为1级或多级细弹性梁。本发明提供推拉式光栅结构降低了常规拉伸式DRIE工艺的苛刻要求,在相同条件下可实现更大的调谐范围,且可采用常规的MEMS工艺,易于大批量、低成本制作。
-
-
-
-
-
-
-
-
-