空间光通信中的高速大视域捕获跟踪探测装置

    公开(公告)号:CN1710835A

    公开(公告)日:2005-12-21

    申请号:CN200510010075.9

    申请日:2005-06-10

    Abstract: 空间光通信中的高速大视域捕获跟踪探测装置,它涉及的是卫星光通信跟瞄装置技术领域。它解决了现有空间光通信终端中,需要两个探测器来对入射光束进行角度检测,而使系统存在结构复杂、可靠性低、体积大的问题。入射光束通过1传输后入射到2的光输入端中,2的1394串行通信端接3的1394串行通信端,3的控制数据总线端通过4与5的数据控制总线端相连接,5的数据地址控制总线端接6的数据地址控制总线端,5的控制数据地址总线端接7的控制数据地址总线端,7的串行通信端口接8的串行通信端口。本发明中使用一个探测器及少量电子元件就能实现对入射光束的方位和俯仰角进行高速度、大视域的检测,并不需要对入射光束进行分束。

    卫星光通信高速跟瞄探测装置及其探测方法

    公开(公告)号:CN1598482A

    公开(公告)日:2005-03-23

    申请号:CN200410043845.5

    申请日:2004-08-31

    Abstract: 卫星光通信高速跟瞄探测装置及其探测方法,它具体是一种卫星光通信高速跟瞄探测装置及其探测方法。光束输入到二元光学器件(1)的输入端后经二元光学器件(1)传输并从二元光学器件(1)的输出端输出到线阵CCD(2)的输入端中,线阵CCD(2)的图像数据输出端连接计算机(3)的图像数据输入端;探测方法的步骤是:像素位置坐标为x,像素光强度值为I(x),运算步骤是:a.读出(2)上光强值Ii(x);b.用一维质心算法计算光斑质心xo′;c.以xo′为分割点分别对两侧进行质心计算得xA和xB;d.求光斑位移;e.根据光斑位移求出光束偏转角度;f.偏转角度值θx、θy测量完成。本发明能对卫星光通信中的高速跟瞄角度偏差进行检测,检测的频率能达到数十kHz。

    一种高抗疲劳、低电场高储能密度的反铁电储能陶瓷及其制备方法和应用

    公开(公告)号:CN116102352B

    公开(公告)日:2023-10-10

    申请号:CN202310054306.4

    申请日:2023-02-03

    Abstract: 一种高抗疲劳、低电场高储能密度的反铁电储能陶瓷及其制备方法和应用。本发明属于储能材料制备领域。本发明的目的是为了解决现有储能陶瓷材料无法兼顾优异的温度稳定性、抗疲劳性和低电场高储能密度的储能特性的技术问题。本发明的储能陶瓷的化学通式为xNaNbO3‑(1‑x)(Bi0.5‑yRyNa0.5)TiO3‑zMe,其中0.1≤x≤1,0.05≤y≤0.25,0≤z≤0.1,R是稀土离子,Me是生长助剂。方法:以NN‑BRNT细晶为基体,以径向比>5的NN片状微晶为模板,采用模板晶粒定向生长技术,在生长助剂的作用下,制备沿[001]择优取向的高抗疲劳、低电场高储能密度的反铁电储能陶瓷。

    一种卫星激光通信复合轴跟踪解耦控制系统及方法

    公开(公告)号:CN111665720B

    公开(公告)日:2022-07-19

    申请号:CN202010550723.4

    申请日:2020-06-16

    Abstract: 一种卫星激光通信复合轴跟踪解耦控制系统及方法,属于通信领域,本发明为解决单探测器跟踪系统采用常规解耦控制方式不能满足在轨状态的实时稳定跟踪的问题。本发明包括捕获探测单元:用于捕获对方发射信标光;粗瞄跟踪单元:用于接收捕获探测单元的补偿量来驱动粗瞄执行机构进行粗跟踪;还用于接收神经网络自适应模型输出的前馈控制量进一步跟踪调节实现稳定跟踪;精瞄跟踪单元:用于驱动精瞄执行机构根据捕获探测单元的补偿量进行精跟踪;神经网络自适应模型:将粗瞄执行机构的位置偏差、速度信息以及精瞄执行机构的位置偏差、偏转速度作为模型输入量,输出前馈控制量给粗瞄跟踪单元。

    一种舰载激光通信扫描捕获方法

    公开(公告)号:CN111628823A

    公开(公告)日:2020-09-04

    申请号:CN202010335556.1

    申请日:2020-04-25

    Abstract: 一种舰载激光通信扫描捕获方法,解决了现有舰船之间激光通信扫描捕获过程中的初始瞄准角度预测精度低的问题,属于舰载激光通信领域。本发明在舰载激光通信链路中加入微波测控信道,本发明的方法包括:S1、在不同舰载平台的终端A和终端B分别实时获取所在舰船平台的三维位置数据,并通过微波测控信道实时传送的对方三维位置数据;S2、终端A和终端B分别根据S1获取的约定时间t0时刻以前的三维位置数据,获取各自瞄准对方的瞄准矢量,并根据该瞄准矢量获得在各自本体地平坐标系下瞄准俯仰角和瞄准水平角的预测值;S3、终端A和终端B根据瞄准俯仰角和瞄准水平角的预测值进行预瞄准;S4、双向扫描捕获,捕获完成,进行光束跟踪。

    无人机与地面激光通信的大气湍流预补偿装置

    公开(公告)号:CN111510222A

    公开(公告)日:2020-08-07

    申请号:CN202010220051.0

    申请日:2020-03-25

    Abstract: 无人机与地面激光通信的大气湍流预补偿装置,解决了现有地面站发射到无人机的激光波前受到大气湍流的影响使得无人机上终端的光纤耦合效率降低,误码率上升的问题,属于激光通信技术领域。本发明安装在地面通信端,包括:波前探测器WFS探测无人机与地面激光通信下行链路激光信号的波前畸变;可变形镜DM补偿下行链路和上行链路的波前畸变;上位机根据探测到的波前畸变控制可变形镜,使光经过可变形镜具有的波前畸变与光经过大气湍流时产生的波前畸变相互抵消;上位机根据无人机的定位信息获得上行链路激光发射方向角度θ,超前跟踪镜ATM调整偏转角度为θ,使上行链路激光能够被下一时刻的无人机接收到。

    卫星激光通信终端单模光纤耦合结构

    公开(公告)号:CN106324760B

    公开(公告)日:2019-04-19

    申请号:CN201611020228.2

    申请日:2016-11-18

    Abstract: 本发明提供了一种卫星激光通信终端单模光纤耦合结构,属于单模光纤耦合结构技术领域。本发明由七根单模光纤和胶体保护套组成,其中一根单模光纤设置在中间位置,在中间位置的单模光纤的外围设有六根单模光纤组成一个截面为圆形的结构,在七根单模光纤组成的圆形结构的外围包覆有胶体保护套,每根单模光纤的外表设有光纤包层;相邻两根单模光纤圆心之间的直线距离为13μm,外围六根单模光纤跟中心单模光纤的平行度均为φ0.05mm,所述光纤包层的厚度≥3μm。本发明提高了光纤接收端面对随机角偏差的容忍性。降低了各种振动引起的对准偏差对耦合效率的影响,提高了通信系统的稳定性,降低了信号的丢失率,从而能够更好更平稳地进行光信息传输。

    单点支撑小型化卫星激光通信收发共用天线装置

    公开(公告)号:CN105549188B

    公开(公告)日:2018-01-30

    申请号:CN201510974769.8

    申请日:2015-12-22

    Abstract: 单点支撑小型化卫星激光通信收发共用天线装置,涉及一种天线结构。解决了背式天线结构终端的体积大和重量过重影响卫星激光通信系统通信性能的问题。本发明所述的主镜固定在基板的上表面,基板和主镜的中心均开有通孔,主镜的中心通孔与基板中心通孔相对应;主镜呈向上凹的弧形,遮光筒的一端垂直固定在基板的上表面,遮光筒的中心轴与主镜的光轴重合,且遮光筒套设在主镜的外侧;圆筒形次镜单点支架的一端穿过主镜中心的通孔与基板垂直连接,圆筒形次镜单点支架的另一端与次镜座的下端固定连接,圆筒形次镜单点支架的顶端侧面有通光空隙,次镜固定在次镜座的下侧的镜座内,次镜与主镜相对设置。本发明适用于无线通信技术领域。

    基于偏转镜的卫星光通信接收光场中心视场快速标定方法及装置

    公开(公告)号:CN105628339A

    公开(公告)日:2016-06-01

    申请号:CN201510962733.8

    申请日:2015-12-18

    CPC classification number: G01M11/02

    Abstract: 一种基于偏转镜的卫星光通信接收光场中心视场快速标定方法及装置,涉及卫星光通信领域。解决了现有卫星光通信中心点标定方法存在标定过程复杂和标定时间过长的问题。采用平行光管和辅助光源模拟光通信终端接收的远场平行光;采用光功率计测试光通信终端接收光纤获得的耦合光功率;连接偏转控制器与偏转镜,并且将光功率计、偏转镜控制器以及CCD通过总线与测试计算机连接;测试计算机采用螺旋扫描方式控制偏转镜的角度,同时采集光功率计获得的光功率值;将辅助光源的波长调整为信标光接收波长,记录CCD质心坐标,并将其作为通信中心点。本发明可以应用于卫星光通信终端光学调试和卫星光通信终端在各种环境试验前后光学指标的测试和复测过程。

Patent Agency Ranking