-
公开(公告)号:CN118508187A
公开(公告)日:2024-08-16
申请号:CN202410601849.8
申请日:2024-05-15
Applicant: 哈尔滨工业大学
Abstract: 一种空间太阳能电池阵盘式导电滑环结构及其安装方法,涉及一种空间太阳能电池阵列技术领域,具体属于空间能电池阵盘式导电滑环结构的优化。解决现有空间太阳能电池阵列导电环间存在的击穿风险,从而导致其使用寿命降低的问题。结构包括盘式导电滑环和多个电刷;所述盘式导电滑环包括正向导电滑环和反向导电滑环;多个电刷数量为六组,其中三组电刷连接在所述正向导电滑环上,且正向导电滑环与三组电刷成120°夹角连接;其余三组电刷连接在所述反向导电滑环上,且反向导电滑环与三组电刷成120°夹角连接;所述正向导电滑环上的电刷与反向导电滑环上的电刷成60°夹角。本发明适用于空间能电池阵盘式导电滑环结构的优化领域。
-
公开(公告)号:CN106877410B
公开(公告)日:2019-05-17
申请号:CN201710197500.2
申请日:2017-03-29
Applicant: 哈尔滨工业大学
Abstract: 火电机组一次调频能力补偿方法,涉及火电机组一次调频能力补偿技术领域。本发明是为了解决目前火电机组运行状态偏离额定设计工况后,机组一次调频能力也会改变的问题。本发明设计的火电机组一次调频补偿方法,当火电机组运行状态发生改变后,针对性修改不等率的设置,保证火电机组运行状态在偏离额定设计工况后,仍具有同样的一次调频能力。本发明所述的电机组一次调频能力补偿方法,适用于火电机组一次调频能力补偿技术领域。
-
公开(公告)号:CN105471253B
公开(公告)日:2018-07-06
申请号:CN201510828739.6
申请日:2015-11-24
Applicant: 哈尔滨工业大学
Abstract: T型耦合电感网络升压变换器,涉及T型耦合电感网络升压变换器,属于电力电子变换器的技术领域。解决了现有采用耦合电感技术实现升压的变换器,通过增加匝数比,实现电压增益的提升的方法,易引起电压和电流尖峰,严重降低了系统的性能的问题。它包括T型耦合电感网络、箝位‑升压电路、功率开关管S、滤波电容Co和整流二极管Do;T型耦合电感网络输入端接直流电压源,T型耦合电感网络的中间绕组(耦合电感第二绕组N2)接功率开关管,T型耦合电感网络的输出端插入箝位‑升压电路后,连接整流二极管和滤波电容。它主要用在升压变换领域。
-
公开(公告)号:CN107283871A
公开(公告)日:2017-10-24
申请号:CN201710737101.0
申请日:2017-08-24
Applicant: 哈尔滨工业大学
CPC classification number: B29C70/34 , B29B15/10 , B29C70/54 , B29K2071/00 , B29K2079/085 , B29K2081/04 , B29K2305/00
Abstract: 一种热塑性树脂基体碳纤维-钛/钛合金层合板的制备方法,它属于轻质复合材料领域,本发明为了解决目前碳纤维增强钛合金层板TiGr的钛合金和预浸料界面胶接效果差的问题。本发明采用的热塑性树脂包括聚醚醚酮(PEEK)、聚苯硫醚(PPS)和聚醚酰亚胺(PEI)三种工程用高性能热塑性树脂,并配合薄膜层叠法以及粉末浸渍法,解决了热塑性树脂对碳纤维的浸渍效果差的问题。
-
公开(公告)号:CN106899028A
公开(公告)日:2017-06-27
申请号:CN201710198544.7
申请日:2017-03-29
Applicant: 北京华建网源电力设计研究所 , 哈尔滨工业大学 , 国网宁夏电力公司经济技术研究院 , 哈尔滨燃卓科技开发有限公司
Abstract: 燃煤汽轮机发电机组一次调频能力背压变化的补偿方法,涉及燃煤汽轮机发电机组一次调频能力背压变化的补偿技术领域。本发明是为了解决目前燃煤汽轮机发电机组背压偏离额定设计工况后,机组一次调频能力也会改变的问题。本发明所述的燃煤汽轮机发电机组背压变化的一次调频补偿方法,当汽轮机背压发生改变后,针对性修改不等率设置,保证转速变化1%时,通过一次调频使发电功率变化20%。保证汽轮机背压在偏离额定设计工况后,燃煤汽轮机发电机组仍具有同样的一次调频能力。本发明所述的燃煤汽轮机发电机组一次调频能力背压变化的补偿方法,适用于燃煤汽轮机发电机组一次调频能力背压变化的补偿。
-
公开(公告)号:CN106845717A
公开(公告)日:2017-06-13
申请号:CN201710056914.3
申请日:2017-01-24
Applicant: 哈尔滨工业大学 , 哈尔滨燃卓科技开发有限公司 , 南京遒涯信息技术有限公司
CPC classification number: Y02P90/82 , G06K9/6267 , G06K9/6218 , G06K9/6247 , G06K9/6256 , G06K9/6292 , G06Q10/04 , G06Q10/0639 , G06Q50/06
Abstract: 一种基于多模型融合策略的能源效率评价方法,本发明涉及基于多模型融合策略的能源效率评价方法。本发明为了解决现有能源效率计算特征难以选择,模型评价结果不准的问题。本发明步骤为:步骤一:将数据进行归一化处理,得到归一化训练集;步骤二:对步骤一得到的归一化训练集进行特征选择;采用将信息增益和核主成份分析相结合的融合方法选取特征;即利用信息增益计算得到特征排序后,利用主成份分析方法做校核计算。步骤三:根据步骤一和步骤二建立多分类器融合的评价模型,得到能源效率评价的分类结果;步骤四:对步骤三得到的分类结果进行聚类分析,得到最终的聚类结果。本发明应用于能源效率有效评估领域。
-
公开(公告)号:CN105114977B
公开(公告)日:2017-05-24
申请号:CN201510556994.X
申请日:2015-09-02
Applicant: 哈尔滨工业大学
Abstract: 一种基于排温测点相关性的燃机燃烧系统在线监测方法,本发明涉及燃机燃烧系统在线监测方法。本发明是要解决现有技术无法实现燃烧系统早期预警的问题,而提出的一种基于排温测点相关性的燃机燃烧系统在线监测方法。该方法是通过步骤一、n个温度测点在t时刻测得温度;二、得到和三、根据步骤二得到的和确定四、定义关系系数五、αi的范围为[αi1,αi2];六、将上限αi1、下限αi2和αi作为极半径在极坐标内以为极角描点,并将所描点从i=1至i=n用直线顺次连接起来,再用直线连接i=1和i=n处所描的点,得到一个封闭的多边形;若极半径αi的范围为[αi1,αi2],则燃气轮机处于正常运行状态等步骤实现的。本发明应用于燃机燃烧系统在线监测领域。
-
公开(公告)号:CN106321160A
公开(公告)日:2017-01-11
申请号:CN201610768525.9
申请日:2016-08-29
Applicant: 哈尔滨燃卓科技开发有限公司 , 大唐东北电力试验研究所有限公司 , 大唐清苑热电有限公司 , 哈尔滨工业大学
IPC: F01D17/10
Abstract: 一种六高调门汽轮机顺序阀优化设计方法,它涉及一种优化设计方法。本发明为了解决现有运行的大量六高调门机组存在的顺序阀进汽规律设计不合理导致的问题和故障。本发明的步骤一:列出基于对角进汽的“2+2+1+1”阀门数目开启规律的12种阀门开启顺序;步骤二:调节机组运行参数和控制方式满足试验条件,进行调门开关试验,并采集实验数据;步骤三:对比分析在各阀序实验运行时间段中的实验数据轴振和瓦温的均值和方差,选择实验结果中均值和方差较小对应的阀门开启顺序;步骤四:根据步骤三的对比分析给出最优的阀门开启顺序。本发明用于汽轮机运行方式优化。
-
公开(公告)号:CN105471253A
公开(公告)日:2016-04-06
申请号:CN201510828739.6
申请日:2015-11-24
Applicant: 哈尔滨工业大学
Abstract: T型耦合电感网络升压变换器,涉及T型耦合电感网络升压变换器,属于电力电子变换器的技术领域。解决了现有采用耦合电感技术实现升压的变换器,通过增加匝数比,实现电压增益的提升的方法,易引起电压和电流尖峰,严重降低了系统的性能的问题。它包括T型耦合电感网络、箝位-升压电路、功率开关管S、滤波电容Co和整流二极管Do;T型耦合电感网络输入端接直流电压源,T型耦合电感网络的中间绕组(耦合电感第二绕组N2)接功率开关管,T型耦合电感网络的输出端插入箝位-升压电路后,连接整流二极管和滤波电容。它主要用在升压变换领域。
-
公开(公告)号:CN105134386A
公开(公告)日:2015-12-09
申请号:CN201510556992.0
申请日:2015-09-02
Applicant: 哈尔滨工业大学
IPC: F02C9/00
Abstract: 基于测点加权值的燃气轮机燃烧系统在线监测方法,属于燃气轮机燃烧系统监测领域。现有的燃烧监测系统难以对燃烧状态变化趋势做出判断的问题。一种基于测点加权值的燃气轮机燃烧系统在线监测方法,在燃气轮机的透平出口周向均匀地布置n个温度测点,得到tm时段内正常运行的排温数据Ti;增加Ti与T1的相关因子αi,1,根据Ti与T1的关系函数,分别得到Ti的预测值;计算无故障温度测点1排温理论值T1';令温度测点1的理论值T1'与温度测点1的实测值T1之差为△T1满足均值为0、标准差为σ1的正态分布;通过△T1与范围[-3σ1,3σ1]的关系进行温度测点的监测。本发明实现燃气轮机排温的在线监测,充分利用排温各个测点之间的相关性,准确检测出异常演变过程。
-
-
-
-
-
-
-
-
-