-
公开(公告)号:CN115129074B
公开(公告)日:2025-02-07
申请号:CN202210679018.3
申请日:2022-06-15
Applicant: 北京空间飞行器总体设计部
IPC: G05D1/49 , G05D109/12
Abstract: 本发明公开了一种四足探测器静步态规划系统。四足探测器由机身平台、移动腿组成。平台连接4套状态一致的移动腿,同时承载探测器结构重量。移动腿具有3自由度,其末端可在三维空间内任意运动。本发明所提出的四足探测器快速静步态规划方法可以在保证机身稳定的前提下,以“8”字形曲线移动机身重心的同时迈步,消除了传统静步态规划方法中在四腿支撑下4次调整机身重心的过程,从而显著提高了探测器行进速度。
-
公开(公告)号:CN115610700A
公开(公告)日:2023-01-17
申请号:CN202211197879.4
申请日:2022-09-29
Applicant: 北京空间飞行器总体设计部
IPC: B64G1/16 , B62D57/028
Abstract: 本发明公开了深空探测、空间机器人技术领域的可变构型轮腿足移动探测机器人,包括有四个六自由度腿、阻尼摇臂、阻尼摇臂展开机构)、车体、车轮、足部和末端工具;四个所述六自由度腿分别设置在所述车体底侧四端;所述车体底侧设置有与阻尼摇臂适配的空腔,所述阻尼摇臂与车体之间通过阻尼摇臂展开机构进行连接,所述阻尼摇臂展开机构用于将阻尼摇臂收拢或者展出车体的空腔内部;实现了其将轮行、腿行、步行、工具更换、协同操作、阻尼悬架等多种功能融为一体,具有轮腿悬架和四边形悬架两种悬架模式,极大提高了星表移动探测机器人的移动、越障、脱困、协同操作、样品采集等方面的能力,同时丰富了星表移动机器人种类。
-
公开(公告)号:CN113147946A
公开(公告)日:2021-07-23
申请号:CN202110307714.7
申请日:2021-03-23
Applicant: 北京空间飞行器总体设计部 , 哈尔滨工业大学
IPC: B62D57/032 , B64G1/62
Abstract: 本发明提供了一种足端机构,涉及着陆器技术领域,包括足架组件、足掌组件和足爪结构,足架组件包括基座和多个足筋,多个足筋分别与基座连接,并形成伞状结构;足掌组件设置在基座上,并适于容纳在伞状结构形成的空间内,足掌组件适于在与接触面接触时伸缩;足爪结构与足筋的端部铰接,足爪结构与接触面接触的一端采用第一仿生结构,足爪结构的另一端与足掌组件连接;当足爪结构与接触面接触时,足掌组件适于为足爪结构提供抓地力。本发明中足端机构能从不同方向上获得抓地力,因此能够提供足够的抓地力,同时,足掌组件可以吸收与接触面接触时的冲击能量,缓冲效果好。
-
公开(公告)号:CN113985864B
公开(公告)日:2024-06-14
申请号:CN202110944144.2
申请日:2021-08-17
Applicant: 北京空间飞行器总体设计部
IPC: G05D1/43
Abstract: 本发明涉及一种动态行走的四足探测机器人及控制方法,属于深空探测技术领域;包括机身、第一移动腿、第二移动腿、第三移动腿和第四移动腿;采用四足机器人对角小跑步态,基于系统自身的状态而非时间规划步态以提高干扰自适应性;通过机身的速度级规划实现姿态调整;通过质心规划使机身前倾、后仰以适应斜坡;建立落足点二维调整率实现速度调节和抗干扰调节;通过基于动力学的控制实现规划步态的渐进跟踪;本发明显著提高四足机器人对角小跑动态行走的稳定性,并具备良好的速度调节、斜坡自适应、干扰自适应的能力。
-
公开(公告)号:CN117687431A
公开(公告)日:2024-03-12
申请号:CN202311371175.9
申请日:2023-10-20
Applicant: 北京空间飞行器总体设计部
IPC: G05D1/49 , G05D109/12
Abstract: 一种航天器用腿式机器人可重复着陆缓冲控制方法,属于机器人控制技术领域。本发明在对驱动机构输出端力矩保护的前提下,利用驱动机构的关节主动驱动能力,调整并提供腿足机构所需的着陆缓冲力,在耗散冲击动能、完成着陆缓冲的同时,保护驱动机构载荷安全,使机器人能够稳定、可重复的完成多次软着陆。本发明提出的航天器用腿式机器人主动着陆缓冲控制方法,利用基于分段式参数体系和应用策略的笛卡尔空间阻抗控制方法,设计控制策略和流程,通过主动控制各腿足机构关节力矩和触地状态检测,实现对着陆冲击能量的耗散,完成着陆缓冲。
-
公开(公告)号:CN115657696A
公开(公告)日:2023-01-31
申请号:CN202210838579.3
申请日:2022-07-18
Applicant: 北京空间飞行器总体设计部
IPC: G05D1/08
Abstract: 本发明提供一种基于先验经验的足式机器人运动轨迹自主涌现方法,建立了足式机器人智能体深度强化学习模型,并设计了强化学习后机器人运动控制的运动轨迹半自主涌现模型、运动轨迹全自主涌现模型,共同形成基于先验经验的足式机器人运动轨迹自主涌现方法,模型部署后可成功实现物理样机的自主运动行走,还可有效实现机器人在无任何人工干预和遥操作指令控制下运动轨迹的自主生成,可降低在轨验证成本及在轨验证风险,为空间机器人在月火复杂环境下智能自主运动行走提供参考,并为传统控制和学习控制指出合作方向。
-
公开(公告)号:CN115476361A
公开(公告)日:2022-12-16
申请号:CN202211154951.5
申请日:2022-09-21
Applicant: 吉林大学 , 北京空间飞行器总体设计部
IPC: B25J9/16
Abstract: 一种足式空间机器人关节反驱特性参数辨识方法,其机械部分包括高低温真空罐、关节、关节输出轴、轴承支架、磁流体密封轴、力矩传感器、联轴器、超载离合器、减速器和反拖电机,关节包括速度旋变、第二电机、谐波减速器和位置旋变;本发明之方法通过控制变量法(温度、反驱转速、力矩)识别关节的反驱摩擦模型,相比传统的库伦‑粘滞摩擦模型,还引入了温度与力矩两种参数的影响,对于反驱摩擦模型的辨识更加精确。
-
公开(公告)号:CN115476361B
公开(公告)日:2024-10-29
申请号:CN202211154951.5
申请日:2022-09-21
Applicant: 吉林大学 , 北京空间飞行器总体设计部
IPC: B25J9/16
Abstract: 一种足式空间机器人关节反驱特性参数辨识方法,其机械部分包括高低温真空罐、关节、关节输出轴、轴承支架、磁流体密封轴、力矩传感器、联轴器、超载离合器、减速器和反拖电机,关节包括速度旋变、第二电机、谐波减速器和位置旋变;本发明之方法通过控制变量法(温度、反驱转速、力矩)识别关节的反驱摩擦模型,相比传统的库伦‑粘滞摩擦模型,还引入了温度与力矩两种参数的影响,对于反驱摩擦模型的辨识更加精确。
-
公开(公告)号:CN112948999A
公开(公告)日:2021-06-11
申请号:CN202110217423.9
申请日:2021-02-26
Applicant: 北京空间飞行器总体设计部
IPC: G06F30/17 , G06F111/08 , G06F119/02 , G06F119/04 , G06F119/14
Abstract: 本发明公开了一种空间机器人用关节可靠性验证方法,首先确定所述关节在各任务阶段下的工作模式、工作时间及工作环境,建立关节的任务剖面表;然后建立关节的可靠性模型;确定关节可靠性R的特征量为关节的输出圈数X;确定关节可靠性R的特征量的分布规律;确定进行关节可靠性验证试验的关节样品的状态和数量;确定关节样品的试验环境条件和试验工况:最后根据确定的关节样品的状态、关节样品的数量n、试验环境条件及试验工况,对用户提供的关节可靠性R进行验证试验;本发明能够建立关节的可靠性模型,确定关节可靠性的特征量及其分布规律,综合关节的任务剖面表,设计可靠性验证方案,解决关节样品验证高可靠指标要求的技术问题。
-
公开(公告)号:CN115657696B
公开(公告)日:2025-03-25
申请号:CN202210838579.3
申请日:2022-07-18
Applicant: 北京空间飞行器总体设计部
IPC: G05D1/49 , G05D109/12
Abstract: 本发明提供一种基于先验经验的足式机器人运动轨迹自主涌现方法,建立了足式机器人智能体深度强化学习模型,并设计了强化学习后机器人运动控制的运动轨迹半自主涌现模型、运动轨迹全自主涌现模型,共同形成基于先验经验的足式机器人运动轨迹自主涌现方法,模型部署后可成功实现物理样机的自主运动行走,还可有效实现机器人在无任何人工干预和遥操作指令控制下运动轨迹的自主生成,可降低在轨验证成本及在轨验证风险,为空间机器人在月火复杂环境下智能自主运动行走提供参考,并为传统控制和学习控制指出合作方向。
-
-
-
-
-
-
-
-
-