-
公开(公告)号:CN105070347B
公开(公告)日:2017-07-11
申请号:CN201510504332.8
申请日:2015-08-17
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种以石墨烯作为接触电极的器件结构及其制备方法,涉及以石墨烯作为接触电极的器件结构技术领域,以干法转移的方法形成h‑BN—石墨烯—超导/半导体材料—h‑BN的新型器件结构,可以避免湿法转移工艺及图形化刻蚀、金属沉积工艺等对材料晶格造成的污染与破坏;以h‑BN作为衬底及封装层,有利于维持石墨烯载流子迁移率,并保护器件避免吸附空气中的O2、H2O及微粒,以提高器件电学性能;此外采用石墨烯作为接触电极,沉积金属与石墨烯截面形成一维的线接触,将大大降低超导/半导体器件的接触电阻。
-
公开(公告)号:CN104894639B
公开(公告)日:2017-06-23
申请号:CN201510316129.8
申请日:2015-06-10
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/20 , H01L21/324 , C30B25/02
Abstract: 本发明的基于石墨烯场效应管微区加热的原位材料生长的方法,包括步骤:首先,制备基于石墨烯的场效应管,所述石墨烯具有窄边微区结构,所述场效应管的背面设置有背栅;然后,在所述石墨烯两端的电极之间加电压源或电流源,通过调节背栅电压来调制所述窄边微区结构的电阻,使所述窄边微区结构产生高温;接着,通入反应源,调节背栅电压,使石墨烯加热到材料生长需要的温度,实现石墨烯微区加热的原位材料生长。本发明基于石墨烯场效应管的微区加热原位生长材料方法操作简单,可以实现基于不同尺寸的微区高温加热的前提下,原位生长半导体材料,材料生长区域形状可控。另外,微区加热原位生长材料的制备方法简单,与现有的MOS工艺兼容,便于大规模阵列及图形化制备,均匀性好。
-
公开(公告)号:CN103151245A
公开(公告)日:2013-06-12
申请号:CN201310103325.8
申请日:2013-03-28
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/02
Abstract: 本发明提供一种薄膜图形化方法,该方法至少包括以下步骤:提供一非金属衬底,并在该非金属衬底上形成光刻胶;进行光学曝光,将预设图形转移至该光刻胶上;在步骤2)之后获得的结构上沉积金属层;然后去除光刻胶并剥离,获得所需金属图形结构;在上述金属图形结构表面沉积薄膜材料,形成薄膜;最后去除剩余金属层得到图形化薄膜。本发明利用通常的图形化技术,实现金属的图形化,再以金属为掩膜板,在衬底上直接沉积高温生长的薄膜材料,该发明即沿用了传统的图形化技术,又克服了光刻胶在高温下无法做掩膜板使用的弊端;与离子束刻蚀方法相比,本发明工艺简单,易于操作,且花费较低。
-
公开(公告)号:CN105070347A
公开(公告)日:2015-11-18
申请号:CN201510504332.8
申请日:2015-08-17
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种以石墨烯作为接触电极的器件结构及其制备方法,涉及以石墨烯作为接触电极的器件结构技术领域,以干法转移的方法形成h-BN—石墨烯—超导/半导体材料—h-BN的新型器件结构,可以避免湿法转移工艺及图形化刻蚀、金属沉积工艺等对材料晶格造成的污染与破坏;以h-BN作为衬底及封装层,有利于维持石墨烯载流子迁移率,并保护器件避免吸附空气中的O2、H2O及微粒,以提高器件电学性能;此外采用石墨烯作为接触电极,沉积金属与石墨烯截面形成一维的线接触,将大大降低超导/半导体器件的接触电阻。
-
公开(公告)号:CN104894639A
公开(公告)日:2015-09-09
申请号:CN201510316129.8
申请日:2015-06-10
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C30B25/02 , H01L21/20 , H01L21/324
Abstract: 本发明的基于石墨烯场效应管微区加热的原位材料生长的方法,包括步骤:首先,制备基于石墨烯的场效应管,所述石墨烯具有窄边微区结构,所述场效应管的背面设置有背栅;然后,在所述石墨烯两端的电极之间加电压源或电流源,通过调节背栅电压来调制所述窄边微区结构的电阻,使所述窄边微区结构产生高温;接着,通入反应源,调节背栅电压,使石墨烯加热到材料生长需要的温度,实现石墨烯微区加热的原位材料生长。本发明基于石墨烯场效应管的微区加热原位生长材料方法操作简单,可以实现基于不同尺寸的微区高温加热的前提下,原位生长半导体材料,材料生长区域形状可控。另外,微区加热原位生长材料的制备方法简单,与现有的MOS工艺兼容,便于大规模阵列及图形化制备,均匀性好。
-
公开(公告)号:CN103151245B
公开(公告)日:2016-02-17
申请号:CN201310103325.8
申请日:2013-03-28
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/02
Abstract: 本发明提供一种薄膜图形化方法,该方法至少包括以下步骤:提供一非金属衬底,并在该非金属衬底上形成光刻胶;进行光学曝光,将预设图形转移至该光刻胶上;在步骤2)之后获得的结构上沉积金属层;然后去除光刻胶并剥离,获得所需金属图形结构;在上述金属图形结构表面沉积薄膜材料,形成薄膜;最后去除剩余金属层得到图形化薄膜。本发明利用通常的图形化技术,实现金属的图形化,再以金属为掩膜板,在衬底上直接沉积高温生长的薄膜材料,该发明即沿用了传统的图形化技术,又克服了光刻胶在高温下无法做掩膜板使用的弊端;与离子束刻蚀方法相比,本发明工艺简单,易于操作,且花费较低。
-
公开(公告)号:CN103839835A
公开(公告)日:2014-06-04
申请号:CN201410114348.3
申请日:2014-03-25
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/336 , B82Y40/00
CPC classification number: H01L29/66045
Abstract: 本发明提供一种基于石墨烯场效应管的微区加方法及结构,所述微区加热结构包括以下步骤:首先,制备基于石墨烯的场效应管,所述石墨烯具有窄边微区结构,所述场效应管的背面设置有背栅;然后,在所述石墨烯两端的电极之间加电压源或电流源,通过调节背栅电压,调制窄边微区结构的电阻,从而实现窄边微区结构的加热,所述加热的温度范围为100~1200℃。本发明的基于石墨烯场效应管的微区加热方法,操作简单,可以实现不同尺寸的微区加热,并且加热区域可控。另外,微区加热结构的制备方法简单,与现有的MOS工艺兼容,制备的微区加热结构产量高、均匀性好。
-
-
-
-
-
-