Abstract:
A vibrator device includes a vibrator element, and a support substrate configured to support the vibrator element. The vibrator element includes a drive arm provided with a drive signal electrode and a drive constant-potential electrode, and a detection arm provided with a detection signal electrode and a detection constant-potential electrode. The support substrate includes a base, and a drive signal interconnection electrically coupled to the drive signal electrode, a drive constant-potential interconnection electrically coupled to the drive constant-potential electrode, and a detection signal interconnection electrically coupled to the detection signal electrode all provided to the base, and the drive arm includes a first surface located at the support substrate side, and a second surface located at an opposite side to the first surface. Further, the drive constant-potential electrode is disposed on the first surface, and the drive signal electrode is disposed on the second surface.
Abstract:
An inertial measurement apparatus has mechanically bendable beams that have an isosceles trapezoid cross-section. The apparatus has a resonant member having a perimeter at least partially defined by a sidewall slanted at a first angular value and at least one electrode disposed adjacent, and parallel, to the sidewall and separated therefrom by a capacitive gap.
Abstract:
The disclosure describes a microelectromechanical gyroscope comprising a substrate and at least one inertial mass suspended from an anchor points by a suspension structure configured to allow the first inertial mass to oscillate rotationally both in the device plane and out of the device plane. The suspension structure comprises a set of first suspenders coated with piezoelectric transducer structures configured drive or detect the oscillating motion of the suspended inertial mass in the device plane, and a set of second suspenders coated with piezoelectric transducer structures configured to drive or detect the oscillating motion of the suspended inertial mass out of the device plane. The set of first suspenders and set of second suspenders are concatenated in the suspension structure.
Abstract:
An inertial force sensor includes a detecting device which detects an inertial force, the detecting device having a first orthogonal arm and a supporting portion, the first orthogonal arm having a first arm and a second arm fixed in a substantially orthogonal direction, and the supporting portion supporting the first arm. The second arm has a folding portion. In this configuration, there is provided a small inertial force sensor which realizes detection of a plurality of different inertial forces and detection of inertial forces of a plurality of detection axes.
Abstract:
A vibrator device includes a base, a first relay substrate mounted on the base, a second relay substrate mounted on the first relay substrate, and a vibrator element mounted on the second relay substrate, in which the second relay substrate is disposed between the first relay substrate and the vibrator, and the second relay substrate includes a terminal that is electrically coupled to the vibrator element and is positioned in a region overlapping with the first relay substrate and not overlapping the vibrator element in a plan view.
Abstract:
A physical quantity detection circuit includes: a synchronous detection circuit that performs a synchronous detection process on a detection target signal based on a detection signal, the detection target signal including a physical quantity detection signal and a leakage signal from a physical quantity detection element, the physical quantity detection element vibrating based on a drive signal to generate the physical quantity detection signal corresponding to a magnitude of a physical quantity, and the leakage signal of vibrations based on the drive signal; and a phase shift circuit that switches a phase difference between the detection signal and the detection target signal, between a first phase difference and a second phase difference that differs from the first phase difference, so that at least part of the leakage signal is output through the synchronous detection process.
Abstract:
A gyro sensor element includes a base, driving vibrating arms, which extend from the base, have a first surface and a second surface located on an opposite side to the first surface, and make a driving vibration, and detecting vibrating arms, which extend from the base, have a third surface located on a same side as the first surface and a fourth surface located on an opposite side to the third surface, and vibrate in accordance with a physical quantity applied to the driving vibrating arms, wherein the driving vibrating arms have bottomed grooves on at least one of the first surface and the second surface, and driving electrodes disposed on inner surfaces of the bottomed grooves, and the detecting vibrating arms have through holes penetrating the detecting vibrating arms in a direction crossing the third surface and the fourth surface, and detecting electrodes disposed on at least a part of an inner wall surface of the through holes.
Abstract:
An oscillator includes a substrate, a detection flap plate which is disposed facing the substrate, and an elastically deformable beam portion which displaceably supports the detection flap plate in a Z axis direction with respect to the substrate, in which the detection flap plate is displaced to the substrate side in a range in which recovery force of the beam portion is larger than the electrostatic force which is formed between the substrate and the detection flap plate. That is, when a boundary at which electrostatic force and recovery force are equal is a pull in critical point, the detection flap plate is displaced within a region above the pull in critical point.
Abstract:
A rotation sensing device is presented. The device comprises: a proof mass arrangement comprising at least one pair of proof masses spaced-apart from one another along a first axis; a suspension assembly comprising flexible suspension beams having a main axis deformable between their substantially straight and curved states, the suspension assembly coupling the proof masses to an anchor assembly, while allowing a drive-mode oscillatory movement of the proof masses at least along a second axis substantially perpendicular to the main axis of the beams; and an actuation mechanism configured and operable to cause the drive-mode oscillatory movement of the proof masses in opposite directions along said second axis, thereby generating a sense-mode oscillatory movement of the proof masses during the rotation of the device about at least one rotation axis perpendicular to said second axis, said sense-mode movement being indicative of a rate of the rotation.
Abstract:
A sensor comprising: a stand; a first body movable along a sensing axis; two pairs of second bodies arranged symmetrically relative to the first body and along the sensing axis; transducers for detecting a position of the first body relative to the stand, for setting the second bodies into vibration along a vibration axis, and for detecting respective vibration frequencies of the second bodies; and surface electrostatic coupling means connecting each second body to the first body in such a manner that a movement of the first body relative to the stand along the sensing axis gives rise respectively to an increase and to a decrease in the electrostatic coupling for one and the other of the pairs of second bodies. Methods of controlling such a sensor.